摘要
高可靠性已成为大功率半导体激光器实用化的重要指标之一,而寿命预测是大功率半导体激光器可靠性评估的首要环节。文中提出了一种双应力交叉步进加速退化的试验方法,对830 nm F-mount封装的大功率半导体激光器进行了四种不同的双应力条件A[22℃,1.4 A],B[42℃,1.4 A],C[42℃,1.8 A],D[62℃,1.8 A]下的电流-温度交叉步进加速退化试验研究,对光输出功率退化轨迹进行拟合,按照80%功率退化作为失效判据,结合修正后的艾琳模型和威布尔分布外推得到器件在正常工作条件下的平均失效时间(MTTF)为5811 h。文中给出了完整的加速退化模型建立过程与详细的外推寿命计算方法,并对模型进行了准确性检验,误差不超过10%。该方法相比单应力恒定加速试验方法,可以大幅度节约试验时间和试验成本,这对于大功率半导体激光器的自主研制具有重要的指导意义。
Objective High reliability becomes very important for the application of high-power laser diodes,and lifetime prediction is the primary aspect of reliability assessment of high-power laser diodes.Accelerated degradation test is a test method to accelerate the degradation process in the laboratory in accordance with the degradation model,which can obtain statistically significant lifetime prediction in a short time.With the advancement of device technology and its reliability,single-stress accelerated degradation test faces problems such as long test time,high cost,and excessive stress application in the degradation mechanism.Therefore,it is necessary to propose an accelerated degradation test for lifetime prediction of highly reliable and long-lived devices.For this purpose,a double-stress cross-step accelerated degradation technological method is designed in this paper.Methods A double-stress cross-step accelerated degradation test is proposed.Aging test platform for high-power laser diodes was built(Fig.5).The device(Fig.4)was subjected to 1600 h accelerated degradation test,and the accelerated degradation data of optical output power under different stress conditions were collected(Tab.1).Performance degradation model was established to analyze the data with the accelerated model to obtain the lifetime prediction values,and the accuracy of the model was tested for significance(Tab.5).Results and Discussions The overall scheme of high-power laser diodes lifetime prediction(Fig.1)has three main steps of bringing degradation data into the model,fitting the lifetime probability density distribution function,and checking accuracy.The double-stress cross-step accelerated degradation test sets the temperature and current as the stress conditions,and the two stress conditions are cross-stepped to form a total of four different stress conditions(Fig.2)as A[22℃,1.4 A],B[42℃,1.4 A],C[42℃,1.8 A],and D[62℃,1.8 A],respectively.The performance degradation model is built according to the YamaKoshi equation and the laser optical output power failure threshold is set.The acceleration model is established according to the generalized Irene model,and the degradation track of the optical output power during the accelerated degradation test is expressed as a segmentation function.After the estimation of the model conversion parameters,the lifetime prediction results were obtained and the parameter errors were compared(Tab.5),and they were all below 10%,which verified the accuracy of the model.Conclusions The accelerated degradation test of 12830 nm F-mount single-emitter device was conducted for 1600 h using four different current-temperature double-stress conditions in cross-step by self-designed experimental platform.The MTTF of the device is 5811 h.The accelerated test method used in this paper saves at least 57.7%of the test time compared with the conventional single-stress constant accelerated lifetime test method,and has the advantages of less sample size and more flexibility in stress conditions.The method has been experimentally validated to provide statistically significant results for device lifetime prediction with experimental cost savings for different high-power laser diodes.
作者
张业奇
王贞福
李特
陈琅
张佳晨
吴顺华
刘嘉辰
杨国文
Zhang Yeqi;Wang Zhenfu;Li Te;Chen Lang;Zhang Jiachen;Wu Shunhua;Liu Jiachen;Yang Guowen(State Key Laboratory of Transient Optics and Photonics,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710119,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《红外与激光工程》
EI
CSCD
北大核心
2023年第5期120-129,共10页
Infrared and Laser Engineering
基金
国家自然科学基金(61504167)
陕西省自然科学基金(2022JQ-531,2019ZY-CXPT-03-05,2018JM6010,2015JQ6263)
陕西省科技厅人才项目(2017KJXX-72)。
关键词
大功率半导体激光器
加速退化试验
双应力
寿命
high-power laser diodes
accelerated degradation test
double-stress
lifetime