摘要
考虑到无损检测图像具有易受噪声干扰且目标占图像面积较小的特性,以图像块为基本单元,提出一种较强鲁棒性和自适应性的抑制式模糊C均值算法用于无损检测图像的分割.首先,对图像块内像素的权重进行自适应确定,其权重受图像块内像素的空间距离和灰度值大小的影响;然后构建了图像块的模糊不确定性模型,并以图像块为基本单元将其引入至新的目标函数并进行求解,给出算法的执行流程;最后采用无损检测图像进行实验,结果显示所提出的算法具有较好的鲁棒性和有效性.
Considering that the non-destructive testing(NDT)image is easy to be disturbed by noise and the target occupies a small area of the image,a robust and adaptive suppressed fuzzy C-means algorithm based on the image patch(SFCMP)is proposed to segment NDT image.Firstly,the weight of the pixels in the image patch is adaptively determined,which is affected by the spatial distance and gray value of each pixel in the image patch.Then the fuzzy uncertainty model of image patch is constructed,and it is introduced into the new objective function with image patch as the basic unit,and the implementation process of the SFCMP is given.Finally,experiments are carried out on the NDT images,and the results show that the SFCMP has good robustness and effectiveness.
作者
郑一博
李忠灿
程杨鑫
董雨荷
朱占龙
ZHENG Yibo;LI Zhongcan;CHENG Yangxin;DONG Yuhe;ZHU Zhanlong(Hebei Key Laboratory of Optoelectronic Information and Geo-Detection Technology,Heibei GEO University,Shijiazhuang 050031,China)
出处
《河北大学学报(自然科学版)》
CAS
北大核心
2023年第4期442-448,共7页
Journal of Hebei University(Natural Science Edition)
基金
河北省重点研发计划项目(22371701D)
河北省创新能力提升计划项目(21567628H)。
关键词
图像分割
抑制式模糊C均值
图像块
无损检测
image segmentation
suppressed fuzzy C-means clustering
image patch
non-destructive testing