期刊文献+

基于VMD和WOA-SVM的变压器绕组松动故障诊断 被引量:4

Fault Diagnosis for Winding Looseness of Transformer Based on VMD and WOA-SVM
在线阅读 下载PDF
导出
摘要 为了更加准确有效地诊断变压器绕组松动故障,提出了一种基于变分模态分解(VMD)和鲸鱼优化支持向量机(WOA-SVM)的变压器绕组松动故障诊断方法。首先,对某10 kV变压器进行模拟故障试验,测量其振动信号;随后,采用VMD将非平稳的振动信号分解成多个本征模态函数(IMF),并计算各层IMF的能量熵,构成特征向量;最后,将特征向量输入鲸鱼算法(WOA)优化的支持向量机(SVM)中训练出分类模型,实现变压器绕组松动故障诊断。结果表明,所提方法适用于变压器绕组松动故障诊断,并且相较于传统的改进SVM分类模型,所提方法的故障识别准确率更高。 In order to diagnose transformer winding looseness fault more accurately and effectively,a fault diagnosis method for transformer winding looseness based on variational mode decomposition(VMD)and support vector machine optimized by whale optimization algorithm(WOA-SVM)is proposed.Firstly,a fault simulation experiment is carried out on a 10 kV transformer to measure its vibration signal.Then,VMD is used to decompose the non-stationary vibration signal into multiple intrinsic mode functions(IMF),and the energy entropy of each IMF is calculated to constitute feature vectors.Finally,the feature vectors are input into the WOA-SVM to train the classification model,and the fault diagnosis of transformer winding looseness is realized.The results show that the proposed method is applicable to the fault diagnosis of transformer winding looseness,and its fault identification accuracy is higher than the traditional improved SVM classification model.
作者 薛健侗 马宏忠 XUE Jiantong;MA Hongzhong(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China)
出处 《电机与控制应用》 2023年第8期84-90,共7页 Electric machines & control application
基金 国家自然科学基金项目(51577050) 国网江苏省电力有限公司科技项目(J2021053)。
关键词 变压器绕组松动 振动信号 变分模态分解 鲸鱼优化支持向量机 故障诊断 transformer winding looseness vibrational signal variational mode decomposition(VMD) support vector machine optimized by whale optimization algorithm(WOA-SVM) fault diagnosis
  • 相关文献

参考文献20

二级参考文献353

共引文献481

同被引文献68

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部