摘要
[研究目的]随着网络威胁情报的功能从共享演化为赋能、从辅助后端治理转变为支撑前端防范,其中本体构建缺乏整体思维、本体粒度限制情报赋能等应用问题日益显现,因此迫切需要一套面向前端防范的细粒度本体模型。[研究方法]采用文献分析法深入思考前端防范下网络威胁情报的应用问题,依托博弈论构建网络威胁情报细粒度本体模型,并以贝叶斯网络模型为例对网络威胁情报细粒度本体应用下的前端防范进行模型检验。[研究结论]网络威胁情报细粒度本体模型能有效应用在情报赋能下的前端方法工作,形成了网络威胁情报从理论构建、方法创新到情报应用实践的整套网络安全前端防范探索机制。
[Research purpose]With the evolution of the function of network threat intelligence from sharing to enabling,from supporting back-end governance to supporting front-end prevention,the application problems such as the lack of overall thinking in ontology construction and the restriction of ontology granularity on intelligence enabling are increasingly apparent,so there is an urgent need for a fine-grained ontology model for front-end prevention.[Research method]The application of network threat intelligence under front-end defense was deeply considered by literature analysis,the fine-grained ontology model of network threat intelligence was built based on game theory,and the Bayesian network model was taken as an example to test the model of front-end defense under the application of fine-grained ontology of network threat intelligence.[Research conclusion]The fine-grained ontology model of network threat intelligence can be effectively applied to the front-end method work under intelligence empowerment,forming a complete set of network security front-end prevention and exploration mechanism of network threat intelligence from theoretical construction,method innovation to intelligence application practice.
作者
胡勉宁
李欣
李明锋
朱容辰
Hu Mianning;Li Xin;Li Mingfeng;Zhu Rongchen(School of Information and Network Security,People's Public Security University of China,Beijing 100038;Key Laboratory of Security Technology and Risk Assessment,Ministry of Public Security,Beijing 100038)
出处
《情报杂志》
CSSCI
北大核心
2023年第9期135-140,148,共7页
Journal of Intelligence
基金
国家社会科学基金项目“网络安全新业态视角下的关键技术风险分析及防控对策研究”(编号:20AZD114)研究成果
CCF-绿盟科技“鲲鹏”科研基金项目“多源视频监控网络威胁智能检测与风险评估关键技术研究”(编号:CCF-NSFOCUS202216)研究成果。
关键词
网络安全
网络威胁情报
情报赋能
细粒度本体模型
前端防范
博弈论
本体构建
network security
network threat intelligence
information empowerment
fine-grained ontology model
front-end prevention
game theory
ontology construction