期刊文献+

基于机器学习的学术论文推荐方法研究 被引量:1

Researches on Recommendation Method of Academic Thesis Based on Machine Learning
在线阅读 下载PDF
导出
摘要 目前,学术论文的数量呈指数增长,论文推荐也已成为一项有吸引力的研究.论文推荐系统具有一定的重要性和优势.文章通过调查已有的一些论文推荐方法,如基于协同过滤的、图的、混合等方法,并对已有方法进行分析和总结的基础上,指出了目前学术论文推荐研究面临的挑战,以期探索出解决挑战的新思路、新方法. Due to the exponential growth in the number of academic theses,the thesis recommendation has become an attractive area of research.This article first introduced the importance and advantages of paper recommendation system.Secondly,it reviewed some existing methods used in thesis recommendation,such as content-based,collaborative filtering,graph-based and hybrid methods.Finally,it introduced the commonly used evaluation methods and academic thesis data sets,and pointed out the challenges facing the current researches on the academic thesis recommendation based on the analysis and summary of the existing methods.
作者 魏斌 万福成 于洪志 马宁 杨恒 WEI Bin;WAN Fu-cheng;YU Hong-zhi;MA Ning;YANG Heng(Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education,Lanzhou 730000,China;Key Laboratory of Intelligent Processing of Ethnic Languages in Gansu Province,Lanzhou 730000,China;Documentation and Information Centre,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730030,China)
出处 《西北民族大学学报(自然科学版)》 2023年第3期72-83,共12页 Journal of Northwest Minzu University(Natural Science)
基金 西北民族大学中央高校资助项目(31920230004)。
关键词 学术论文推荐 推荐算法 协同过滤 图结构 Academic paper recommendation Recommendation algorithm Collaborative filtering Graph structure
  • 相关文献

参考文献23

二级参考文献178

共引文献371

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部