期刊文献+

基于交互多模型的惯性/DVL鲁棒自适应组合导航方法研究

Research on INS/DVL robust adaptive integrated navigation method based on interactive multiple models
原文传递
导出
摘要 惯性导航(INS)/多普勒计程仪(DVL)组合导航系统是一种常见的水下导航方式。水下环境的不确定性是影响组合定位精度的因素之一。为了提高INS/DVL组合导航系统对未知水下噪声的自适应性和鲁棒性,提出一种基于学生t分布/混合高斯分布的水下噪声建模方法。基于多模态混合的噪声模型,建立一种基于交互多模型(IMM)的INS/DVL组合导航算法,可以根据环境特性自适应地选择合适的噪声模型以满足算法对自适应性和鲁棒性的要求。仿真试验结果表明,相比于传统组合导航算法,提出的算法对环境的适应性更高,能够提高INS/DVL组合导航系统在复杂水下环境中的定位精度和鲁棒性。 Inertial navigation system(INS)/Doppler Velocity Log(DVL)integrated navigation system is a common underwater navigation method.The uncertainty of underwater environment is one of the factors that affect the integrated positioning accuracy.In order to improve the adaptability and robustness of INS/DVL integrated navigation system to unknown underwater noise,a modeling method of underwater noise based on student't distribution/mixed Gaussian distribution is proposed.An INS/DVL integrated navigation algorithm based on Interactive multiple model(IMM)is proposed based on the multi-modal noise model,which can adaptively select the appropriate noise model according to the environmental characteristics to meet the requirements of the algorithm for adaptability and robustness.The simulation results show that the proposed algorithm is more adaptable to the environment than the traditional integrated navigation algorithm,and can improve the positioning accuracy and robustness of INS/DVL integrated navigation system in complex underwater environment.
作者 杨柯 李德峰 蔡玉宝 Yang Ke;Li Defeng;Cai Yubao(Military Representative Office of the PLA Naval Equipment Department in Wuhan Military Representative Bureau in Zhengzhou Region,Zhengzhou 450000,China;The 27th Research Institute of CETC,Zhengzhou 450000,China)
出处 《战术导弹技术》 北大核心 2023年第4期48-55,共8页 Tactical Missile Technology
关键词 惯性导航 DVL 交互多模型 鲁棒滤波 水下导航 组合导航 噪声建模 inertial navigation DVL interactive multiple model robust filter underwater naviga⁃tion integrated navigation noise modeling
  • 相关文献

参考文献7

二级参考文献105

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部