期刊文献+

锂离子电池SOC评估方法研究进展 被引量:7

Research progress of SOC evaluation methods for lithium ion batteries
在线阅读 下载PDF
导出
摘要 锂离子电池在电动汽车行业中的应用引起了广泛的关注。然而,由于锂离子电池在运行过程中会逐渐老化,这可能导致意外发生,因此需要对锂离子电池进行监管和维护。荷电状态(state of charge,SOC)对锂离子电池的监测和维护起着至关重要的作用。准确的SOC估计可以确保锂离子电池正常充放电并延长其使用寿命。对锂离子电池SOC估计方法进行了总结和分类,介绍了各种方法的原理,总结了其优缺点,并对未来锂离子电池SOC估计方法做出展望。 The application of lithium ion batteries in the electric vehicle industry has attracted extensive attention.However,due to the gradual aging of lithium ion batteries during operation,which may lead to accidents,it is necessary to supervise and maintain the lithium ion batteries.State of charge(SOC)plays an important role in the monitoring and maintenance of lithium ion batteries.Accurate SOC estimation can ensure normal charging and discharging of lithium ion batteries and prolong their service life.The current state of charge estimation methods for lithium ion batteries were summarized and classified.There were two kinds of estimation methods-direct method and indirect method.The direct method included coulomb counting method,open circuit voltage method and internal resistance method.The indirect method included model-based,data-driven and fusion methods,illustrating the principles of each method and summarizing its advantages and disadvantages.Finally,a summary was made and the future SOC estimation methods of lithium ion batteries are prospected.
作者 万广伟 张强 WAN Guangwei;ZHANG Qiang(School of Energy and Power Engineering,Shandong University,Jinan Shandong 250061,China)
出处 《电源技术》 CAS 北大核心 2023年第9期1122-1125,共4页 Chinese Journal of Power Sources
关键词 锂离子电池 荷电状态 直接法 间接法 lithium ion battery state of charge direct method indirect method
  • 相关文献

参考文献8

二级参考文献152

  • 1李军,邹发明,涂雄,刘彪,王文宾.基于模糊控制策略的PHEV仿真研究[J].重庆交通大学学报(自然科学版),2013,32(2):329-334. 被引量:8
  • 2陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005(3):1-5. 被引量:85
  • 3林成涛,仇斌,陈全世.电动汽车电池功率输入等效电路模型的比较研究[J].汽车工程,2006,28(3):229-234. 被引量:53
  • 4VALERIE H J.Battery performance models in ADVISOR[J].Journal of Power Sources,2002,110:321-329.
  • 5GREGORY L P.LiPB dynamic cell models for kalman-filter SOC estimation[A].Proceedings of the 19th International Electric Vehicle Symposium[C],Pusan:EVS,2002.1 860-1 871.
  • 6O'GORMAN C C,INGERSOLL D,JUNGST R G,et al.Artificial neural network simulation of battery performance[A].Proc 31st Annual Hawaii International Conference on System Sciences[C],Hawaii:ICSS,1998.461-472.
  • 7US Department of Energy.USABC Electric Vehicle Battery Test Procedure Manual[M].Washington:US Department of Energy,1996.33-135.
  • 8US Department of Energy.PNGV Battery Test Manual[M].Washington:US Department of Energy,2001.42-144.
  • 9DING Z W, WANG S L,ZHAO W J, et al. Studyabout lithium battery’s characteristics[ C]. Computer,Mechatronics, Control and Electronic Engineering(CMCE 2010),2010: 639-642.
  • 10WU T Z, CHEN X G, XIA F Z,el at. Research onSOC hybrid estimation algorithm of power battery basedon EKF[ C]. Power and Energy Engineering Conference(APPEEC), Asia-Pacific, 2011: 1-3.

共引文献252

同被引文献86

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部