期刊文献+

基于贝叶斯优化与CBAM-ResNet的乏燃料剪切机故障诊断方法 被引量:4

Condition Monitoring of Spent Fuel Shearing Tools Using Bayesian Optimized CBAM-ResNet
在线阅读 下载PDF
导出
摘要 乏燃料剪切机是动力堆乏燃料后处理首端的重要设备,状态监测与故障诊断对于保证乏燃料剪切机的安全运行、避免重大事故、减少其维修时间和费用有着重要的作用。针对目前中国针对乏燃料剪切机的故障诊断研究少、数据获取难度大、故障诊断的准确率低等问题,构建基于贝叶斯优化与卷积块注意力模块(convolutional block attention module,CBAM)的残差神经网络模型。首先在利用双声道差分法对噪声降噪,将其转化为梅尔频谱图并进行数据增强;其次引入CBAM对残差网络进行改进,提高网络的深层次特征提取能力,并利用贝叶斯优化算法训练优化器等超参数,得到最优超参数后重新训练网络模型。最后,通过实验结果显示所构建模型的诊断准确率为93.67%,对比其他方法有显著的提高。 The spent fuel shearing machine is an important equipment at the head end of the power reactor spent fuel reprocessing.Condition monitoring and fault diagnosis play an important role in ensuring the safe operation of the spent fuel shear,avoiding major accidents,and reducing its maintenance time and cost.In view of the problems such as the lack of research on fault diagnosis of spent fuel shears in China,the difficulty of data acquisition,and the low accuracy of fault diagnosis,a residual network model based on Bayesian optimization and convolutional block attention module(CBAM)was constructed.First of all,the noise was reduced by using the dualchannel difference method,and it was converted into mel spectrograms.Secondly,CBAM was introduced to improve the residual network and improve the deep feature extraction ability of the network.Bayesian optimization algorithm was used to train the super parameters such as the optimizer,and the network model was retrained after the optimal super parameters were obtained.Finally,the experimental results show that the diagnostic accuracy of the model is 93.67%,which is significantly improved compared with other methods.
作者 陈甲华 王平平 CHEN Jia-hua;WANG Ping-ping(School of Economics Management and Law,University of South China,Hengyang 421001,China;Hunan Provincial Key Laboratory of Emergency Safety Technology and Equipment for Nuclear Facilities,Hengyang 421001,China)
出处 《科学技术与工程》 北大核心 2023年第28期12101-12107,共7页 Science Technology and Engineering
基金 湖南省教育厅重点项目(19A443) 湖南省哲学社会科学规划基金(14JD51)。
关键词 残差网络 卷积块注意力模块(CBAM) 贝叶斯优化 卷积层 乏燃料剪切机 故障诊断 residual network convolutional block attention module(CBAM) Bayesian optimization convolution layer spent fuel shearing machines fault diagnosis
  • 相关文献

参考文献11

二级参考文献90

共引文献355

同被引文献29

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部