期刊文献+

基于整体模型的中低雷诺数定常流固耦合拓扑优化研究 被引量:1

Research on monolithic model based topology optimization of steady fluid-structure interaction problem with moderate and low Reynolds number
在线阅读 下载PDF
导出
摘要 当前流固耦合拓扑优化方法的研究突显了在流体和结构力学两套截然不同的控制方程之间交替使用的困难,即在分离的流体和固体域之间施加耦合边界条件的困难。为了解决流固耦合拓扑优化面临的流固界面表达难题,基于流固耦合拓扑优化问题的整体模型,采用多孔介质模型进行材质插值,建立了流固耦合问题的拓扑优化模型,进而通过连续伴随方法获得模型的伴随灵敏度,以及数值求解Navier-Stokes方程和线弹性力学控制方程,实现所建立拓扑优化模型的求解;通过雷诺数1~500的二维悬臂梁和二维通道流固耦合拓扑优化仿真结果,验证了建立的流固耦合拓扑优化模型。 Current research on fluid-structure interaction topology optimization methods highlights the difficulty of alternating between different sets of control equations in fluid and structural mechanics,that is the difficulty of imposing coupling boundary conditions between separated fluid and solid domains.In order to solve the problem that on the expression of the fluid-structure interface in the process of topology optimization for fluid-structure interaction,based on the monolithic model of the fluid-structure interaction topology optimization problem,the porous medium model for material interpolation was utilized.The topology optimization model of the fluid-structure interaction problem was established,and then the adjoint sensitivity of the model was obtained by continuous adjoint method,and the Navier-Stokes equation and linear elasticity control equation were numerically solved,so as to realize the solution of the established topology optimization model.Through the simulation results of two-dimensional cantilever beam and two-dimensional channel fluid-structure interaction topology optimization simulation with a Reynolds number range of 1~500,the established fluid-structure interaction topology optimization model was verified.
作者 苗永壮 张健宇 韩海涛 赵宁 邓永波 张卫红 MIAO Yongzhuang;ZHANG Jianyu;HAN Haitao;ZHAO Ning;DENG Yongbo;ZHANG Weihong(Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;University of Chinese Academy of Sciences,Beijing 100049,China;State IJR Center of Aerospace Design and Additive Manufacturing,Northwestern Polytechnical University,Xi'an 710072,China)
出处 《现代制造工程》 CSCD 北大核心 2023年第11期94-103,54,共11页 Modern Manufacturing Engineering
基金 中国科学院稳定支持基础研究领域青年团队项目(YSBR-066) 中国科学院长春光学精密机械与物理研究所创新面上项目 天津市科技局省院合作资金项目(22YFYSHZ00100)。
关键词 拓扑优化 流固耦合 材质插值 连续伴随分析 topology optimization fluid-structure interaction material interpolation continuous adjoint analysis
  • 相关文献

参考文献2

二级参考文献17

  • 1Mei Yulin,Wang Xiaoming Department of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China.LEVEL SET METHOD FOR TOPOLOGICAL OPTIMIZATION APPLYING TO STRUCTURE, MECHANISM AND MATERIAL DESIGNS[J].Chinese Journal of Mechanical Engineering,2004,17(2):200-209. 被引量:3
  • 2Guest J K, Prevost J H. Topology Optimization of Creeping Fluid Flows Using a Darcy-stokes Finite Element[J]. International Journal for Numerical Methods in Engineering, 2006,66 : 461-484.
  • 3Osher S, Sethian J. Front Propagating with Curvature Dependent Speed:Algorithms Based on Hamilton-jacobi Formulations[J]. Journal of Computational Physics, 1988,79(1): 12-49.
  • 4Sussman M. Smereka P, Osher S. A Level Set Approach for Computing Solutions to Incompressible 2 -phase Flow[J]. Journal of Computational Physics, 1994,114 : 146-159.
  • 5Deng Y B,Liu Z Y,Wu Y H,el al. Topology Optimization of Unsteady Incompressible Navier- stokes Flows[J]. Journal of Computational Physics, 2010,230(17) :6688-6708.
  • 6Liu Z Y,Korvink J G, Huang R Y. Structure Topology Optimization: Fully Coupled Level Set Method via FEMLAB[J]. Structural and Multidisciplinary Optimization, 2005,29:407-417.
  • 7Wang M Y,Chen S K,Wang X M. Design of Multi- material Compliant Mechanisms Using Level-set Methods[J]. Journal of Mechanical Design, 2005, 127(5) :941-956.
  • 8Liu Z Y,Gao Q Y,Zhang P,et al. Topology Optimization of Fluid Channels with Flow Rate Equality Constraints [J].Structural and Multidisciplinary Optimization, 2011, 44 ( 1 ) : 31-37.
  • 9Papadimitriou D I,Giannakoglou K C. Aerodynamic Shape Optimization Using First and Second Or- der Adjoint and Direct Approaches [J]. Arch. Comput. Methods Eng. ,2008,15..447-488.
  • 10Challis V J,Guest J K. Level Set Topology Optimi- zation of Fluids in Stokes Flow[-J]. International Journal for Numerical Method in Engineering, 2009,79(10) :1284-1308.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部