期刊文献+

输入量化下航天器位姿一体化预设时间控制 被引量:2

Predefined-time integrated pose control for spacecraft under input quantization
原文传递
导出
摘要 航天器在轨抢修或维护等空间近距任务中,往往要求执行任务的航天器在限定的时间窗口和有限通信带宽的条件下,实现对目标的位姿跟踪。针对其姿轨耦合控制问题,提出了一种带有输入量化的姿轨一体化预设时间控制方法。首先,在Lie群SE(3)框架下,建立了相对运动航天器位姿一体化误差动力学模型。其次,引入了输入量化机制,减小控制器到执行机构间的通信频次。接着,基于推导的实际预设时间稳定引理,结合反步法设计了一种非奇异预设时间位姿跟踪控制器。为提高系统鲁棒性,设计新型自适应律估计并补偿系统总扰动,并利用量化器参数抑制量化误差;该方法能够在不依赖系统初始状态、输入量化和扰动信息未知的情况下实现预设时间内稳定,且稳定时间上界可由一个控制参数预先设定。然后,基于Lyapunov理论证明了系统的稳定性。最后,数值仿真结果验证了该方法的有效性。 In the close-space missions such as spacecraft on-orbit repair and maintenance,it is often demanded for the spacecraft,which performs the task,to track the target spacecraft’s position and attitude simultaneously within a specific time window and limited communication bandwidth.To solve the attitude-orbit coupling control problem in⁃volved,an integrated predefined-time control strategy is proposed.Firstly,an error dynamic model of position and atti⁃tude integration for relative motion spacecraft is established in the framework of Lie group SE(3).Then,the input quantization mechanism is introduced to reduce the communication frequency from the control system to the actua⁃tors.Subsequently,based on the derived practical predefined-time stable lemma,together with the back-stepping method,a nonsingular predefined-time pose tracking controller is designed.To improve the robust property of the sys⁃tem,a novel adaptive updating strategy to estimate and compensate for the system’s lump disturbance,and the quantizer parameters are exploited to reject the quantization error.This strategy could guarantee the predefined-time stability for the system,in the case of independent on the initial states,input quantization and the unknown distur⁃bance,in addition,the upper bound of system’s convergence time is appointed by a control parameter in advance.Next,based on Lyapunov stability theory,the stability of the closed-loop system is proved.Finally,the simulation re⁃sults verify the effectiveness of the proposed strategy.
作者 张洪珠 叶东 孙兆伟 ZHANG Hongzhu;YE Dong;SUN Zhaowei(Research Center of Satellite Technology,Harbin Institute of Technology,Harbin 150001,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2023年第22期223-241,共19页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(62073102,62203145) 国家重点研发计划(2021YFC2202900)。
关键词 在轨维护 位姿一体化控制 李群SE(3) 输入量化 预设时间控制 on-orbit maintenance integrated pose control Lie group SE(3) input quantization predefined-time control
  • 相关文献

参考文献11

二级参考文献88

  • 1韩京清,王伟.非线性跟踪─微分器[J].系统科学与数学,1994,14(2):177-183. 被引量:413
  • 2丁世宏,李世华.空间飞行器姿态的有限时间跟踪控制方法[J].航空学报,2007,28(3):628-633. 被引量:9
  • 3朱亮,姜长生,张春雨.基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制[J].航空学报,2007,28(3):673-677. 被引量:17
  • 4刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418. 被引量:578
  • 5Ali I, Radice G, Kim J. Backstepping control design with actuator torque bound for spacecraft attitude maneuver ~ J ]. Journal of guidance, control, and dynamics, 2010, 33 ( 1 ) : 254 - 259.
  • 6Hu Q, Friswell M I. Robust variable structure attitude control with L2-gain performance for a flexible spacecraft including input saturation [ J ]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2010, 224(2) : 153 -167.
  • 7Chen Z, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control [J]. IEEE Transactions on Automatic Control, 2009, 54(3): 600- 605.
  • 8Yeh F K. Sliding-mode adaptive attitude controller design for spacecrafts with thrusters [ J ]. IET Control Theory & Applications, 2010, 4(7) : 1254 - 1264.
  • 9Hung J Y, Gao W, Hung J C. Variable structure control: a survey [ J]. IEEE Transactions on Industrial Electronics, 1993, 40(1) : 2 -22.
  • 10Du H, Li S. Finite-time attitude stabilization for a spacecraft using homogeneous method [ J]. Journal of Guidance, Control, and Dynamics, 2012, 35(3): 740-748.

共引文献107

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部