期刊文献+

基于OVMD-MPE算法的隧道爆破振动数据降噪分析

Noise Reduction Analysis of Tunnel Blasting Vibration Data based on OVMD-MPE Algorithm
在线阅读 下载PDF
导出
摘要 受隧道爆破复杂环境和仪器电磁干扰等因素的影响,实测爆破振动信号多含有高频噪声,通过直接分析原始信号不能有效分析爆破振动规律。为获得真实的爆破振动特征,采用基于最优变分模态分解(OVMD)和多尺度排列熵(MPE)相结合的信号光滑降噪模型,通过仿真叠加信号和工程实测信号进行检验。首先将信号进行OVMD分解得到带限固有模态函数(BIMF),然后将大于MPE设定阈值的高频BIMF作为噪声剔除,最后重构剩余BIMF分量,得到降噪信号。结果表明:OVMD-MPE模型能精确识别信号的频率信息,前两阶分量能有效反映叠加信号的有效成分,适用高精度数据序列分析,提取数据序列特征;相较EEMD-MPE和CEEMDAN-MPE模型,OVMD-MPE模型具备更优降噪性能,降噪误差比、均根方误差和光滑度分别提升22.05%、48%和33.34%,去噪后曲线更贴近原始信号,更适用不同震源距离的爆破信号分析;双子山隧道右线施工时产生的爆破扰动集中于200 Hz以下的中低频段,双子山隧道衬砌结构的固有频率与爆破信号频率相仿,需采取减震措施确保隧道工程的施工安全。 Due to the influence of complex environment of tunnel blasting and the electromagnetic interference of instruments,the measured blasting vibration signals mostly contain high-frequency noise,which makes it ineffective to analyze related laws by the raw blasting vibration data.In order to obtain the real blasting vibration characteristics,a signal smoothing and noise reduction model based on the optimal variational mode decomposition(OVMD)and the multi-scale permutation entropy(MPE)is adopted,which is verified by the simulated superposition signals and measured signals.Firstly,the signal is decomposed by OVMD to obtain the band-limited intrinsic mode functions(BIMF).Then,the high-frequency BIMFs larger than the threshold set by MPE are removed as noise.Finally,the remaining BIMFs components are reconstructed to obtain the noise-reduced signal.The results show that the OVMD-MPE model can accurately identify the signal frequency information,and the first two order components can effectively reflect the effective contents of the superimposed signal,which is suitable for high-precision data analysis and feature extraction.Compared with EEMD-MPE and CEEMDAN-MPE models,the OVMD-MPE model has better noise reduction performance.The noise reduction error ratio,root mean square error and smoothness are increased by 22.05%,48%and 33.34%,respectively.The denoised curve is closer to the original signal and is more suitable for blasting signal analysis with different source distances.The blasting vibration signals measured during the construction of the right line of Shuangzishan Tunnel are concentrated in the middle and the low frequency bands below 200 Hz.The natural frequency of the lining structure is similar to the main frequency of the blasting signal,which means shock absorption measures need to be taken to ensure the construction safety of the tunnel project.
作者 王双 赵文清 赵事成 郝广伟 龙福中 苏晖 WANG Shuang;ZHAO Wen-qing;ZHAO Shi-cheng;HAO Guang-wei;LONG Fu-zhong;SU Hui(Shandong Luqiao Group Co.,Ltd.,Jinan 250011,China;Shandong Key Laboratory of Disaster Prevention and Mitigation of Civil Engineering,Shandong University of Science and Technology,Qingdao 266590,China;School of Qilu Transportationg,Shandong University,Jinan 250002,China)
出处 《爆破》 CSCD 北大核心 2023年第4期166-173,共8页 Blasting
基金 2021年度矿山地下工程教育部工程研究中心开放基金资助项目(JYBGCZX2021102)。
关键词 隧道工程 爆破振动 OVMD MPE 信号降噪 tunnel engineering blasting vibration OVMD MPE signal noise reduction
  • 相关文献

参考文献15

二级参考文献153

  • 1陈泽,丁琳琳,罗浩,宋宝燕,张明,潘一山.基于改进小波分解和ELM的矿山微震事件识别方法[J].煤炭学报,2020,45(S02):637-648. 被引量:13
  • 2刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,2004,40(16):84-86. 被引量:121
  • 3毕继红,钟建辉.邻近隧道爆破震动对既有隧道影响的研究[J].工程爆破,2004,10(4):69-73. 被引量:98
  • 4张鹏,蒋志浩,秘金钟,党亚民.我国GPS跟踪站数据处理与时间序列特征分析[J].武汉大学学报(信息科学版),2007,32(3):251-254. 被引量:54
  • 5Do P, Voisin A, Levrat E, et al. A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions [ J ]. Reliability Engineering & System Safety ,2015,133 : 22 - 32.
  • 6Heng A, Zhang S, Tan A C C, et al. Rotating machinery prognostics : state of the art, challenges and opportunities [ J ]. Mechanical Systems and Signal Processing, 2009, 23 ( 3 ) : 724 - 739.
  • 7Jardine A K S, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance [ J ]. Mechanical Systems and Signal Processing, 2006, 20(7) : 1483 - 1510.
  • 8Dragomiretskiy K, Zosso D. Variational mode decomposition [ J]. IEEE Transactions on Signal Processing, 2013,62 ( 3 ) : 531 - 544.
  • 9Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1998, 454( 1971 ) : 903 - 995.
  • 10Rilling G, Flandrin P. One or two frequencies? The empirical mode decomposition answers [ J ]. IEEE Transactions on Signal Processing, 2008, 56 ( 1 ) : 85 - 95.

共引文献211

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部