期刊文献+

基于深度强化学习的微电网源-荷低碳调度优化研究

Research on Source-load Low-carbon Optimal Dispatching for Microgrid Based on Deep Reinforcement Learning
在线阅读 下载PDF
导出
摘要 提升可再生能源在能源供给中的比例成为实现低碳经济的重要举措之一。为减少碳排放量并降低用电成本,提出了一种基于深度强化学习的微电网低碳经济优化调度模型。首先,介绍了碳排放流理论并基于此构建了碳计量模型以及阶梯碳价模型;其次,将低碳经济优化问题转换为一个马尔科夫决策;最后,利用深度强化学习对该多目标优化问题求解。实验结果表明,所提方法通过控制发电机组的出力以及负荷的转移,有效地提升了系统经济性并降低了碳排放量。 Enhancing the proportion of renewable energy sources in energy supply becomes a significant initiative to realize a low-carbon economy.A model based on deep reinforcement learning(DRL) for optimal allocation of low-carbon economy in microgrid is proposed to mitigate carbon emission and decrease electricity cost.Firstly,carbon emission flow theory is introduced on which a carbon measurement model and a stepped carbon price model are constructed.Secondly,the low-carbon economy optimization problem is converted into a Markov decision.Finally,the multi-objective optimization issue can be addressed utilizing DRL.The experimental results demonstrate that the proposed approach is effective in boosting system economy and mitigating carbon emissions by regulating the capacity of generating units and shifting the load.
作者 冯文韬 李龙胜 曾愚 潘可佳 张子闻 景致远 FENG Wentao;LI Longsheng;ZENG Yu;PAN Kejia;ZHANG Ziwen;JING Zhiyuan(State Grid Sichuan Information and Communication Company,Chengdu 610041,Sichuan,China;School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,Sichuan,China)
出处 《四川电力技术》 2023年第6期75-82,共8页 Sichuan Electric Power Technology
基金 国网四川省电力公司科技项目(B7194723R001)。
关键词 碳排放流理论 阶梯碳价模型 深度强化学习 carbon emission flow theory stepped carbon price model deep reinforcement learning
  • 相关文献

参考文献9

二级参考文献151

  • 1Di Cao,Weihao Hu,Junbo Zhao,Guozhou Zhang,Bin Zhang,Zhou Liu,Zhe Chen,Frede Blaabjerg.Reinforcement Learning and Its Applications in Modern Power and Energy Systems: A Review[J].Journal of Modern Power Systems and Clean Energy,2020,8(6):1029-1042. 被引量:33
  • 2陈颖,沈沉,梅生伟,卢强.基于改进Jacobian-Free Newton-GMRES(m)的电力系统分布式潮流计算[J].电力系统自动化,2006,30(9):5-8. 被引量:77
  • 3魏一鸣,等.中国能源报告(2008):碳排放研究[M].北京:科学出版社,2008:134.
  • 4高阳,周如益,王皓,曹志新.平均奖赏强化学习算法研究[J].计算机学报,2007,30(8):1372-1378. 被引量:38
  • 5IPCC.Intergovernmental panel for climate change:fourth assessment report[R].Cambridge,UK:Cambridge University,2007.
  • 6GRUBB M,JAMASB T,POLLITT M G.Delivering a low-carbon electricity system[M].Cambridge,UK:Cambridge University Press,2008.
  • 7JAMASB T,NUTTALL W J,POLLITT M G.Future electricity technologies and systems[M].Cambridge,UK:Cambridge University Press,2008.
  • 8Carbon flows:the emissions omitted-the usual figures ignore the role of trade in the world’s carbon economy[EB/OL].[2011-04-28].http://www.economist.com/node/18618451.
  • 9ATKINSON G,HAMILTON K,RUTA G,et al.Trade in virtual carbon:empirical results and implications for policy[J].Global Environmental Change,2011,21:563-574.
  • 10Carbon footprints:following the footprints[EB/OL].[2011-06-02].http://www.economist.com/node/18750670.

共引文献861

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部