摘要
宽禁带半导体β-Ga_(2)O_(3)因为具有优良的物理化学性能而成为研究热点.本文基于DFT(Density Functional Theory)的第一性原理方法,先采用PBE(Perdew-Burke-Ernzerhof)中的GGA(Generalized Gradient Approximation)和GGA+U(Generalized Gradient Approximation-Hubbard U)的方法计算了本征β-Ga_(2)O_(3),Lu掺杂浓度为12.5%的β-Ga_(2)O_(3)及Lu-Eu共掺杂浓度为25%的β-Ga_(2)O_(3)结构的晶格常数、能带结构和体系总能量.发现采用GGA+U的方法计算的带隙值更接近实验值,于是采用GGA+U的方法计算了本征β-Ga_(2)O_(3),Lu掺杂的β-Ga_(2)O_(3)以及Lu-Eu共掺杂的β-Ga_(2)O_(3)结构的能态总密度、介电函数、吸收谱以及反射率等.由计算结果得知β-Ga_(2)O_(3)的带隙为4.24 eV,Lu掺杂浓度为12.5%的β-Ga_(2)O_(3)的带隙为2.23 eV,Lu-Eu共掺杂浓度为25%的β-Ga_(2)O_(3)的带隙为0.9 eV,均为直接带隙半导体,掺杂并未改变β-Ga_(2)O_(3)的带隙方式.光学性质计算结果表明在低能区掺杂浓度为12.5%的Lu和Lu-Eu共掺杂浓度为25%的β-Ga_(2)O_(3)的吸收系数和反射率均强于本征β-Ga_(2)O_(3),Lu-Eu掺杂β-Ga_(2)O_(3)的吸收系数和反射率又略强于Lu掺杂β-Ga_(2)O_(3),表明Lu-Eu掺杂β-Ga_(2)O_(3)的材料有望应用于制备红外光电子器件.
Wide band gap semiconductorβ-Ga_(2)O_(3)has become a research hotspot because of its excellent physical and chemical properties.Based on the first-principle method of density functional theory,the band structures,lattice constants and total energies of intrinsicβ-Ga_(2)O_(3),Lu-dopedβ-Ga_(2)O_(3)at a doping concentration of 12.5 at%and Lu-Eu co-dopedβ-Ga_(2)O_(3)at a doping concentration of 25 at%structures were calculated by GGA(Generalized Gradient Approximation)and GGA+U(Generalized Gradient Approximation-Hubbard U)methods in PBE(Perdew-Burke-Ernzerhof).It is found that the band gap calculated by the GGA+U method is closer to the experimental value,so the GGA+U method was used to calculate the basic physical properties,such as the density of states,dielectric function,absorption spectrum and reflectance,for the intrinsicβ-Ga_(2)O_(3),Lu-dopedβ-Ga_(2)O_(3)and Lu-Eu co-dopedβ-Ga_(2)O_(3)systems.The results show that the band gap ofβ-Ga_(2)O_(3)is 4.24 eV,the band gap of Lu-dopedβ-Ga_(2)O_(3)at a doping concentration of 12.5 at%iS_(2).23 eV,and the band gap of Lu-Eu co-dopedβ-Ga_(2)O_(3)at a doping concentration of 25 at%is 0.9 eV.All of these are direct band gap semiconductors.The doping does not change the band gap mode ofβ-Ga_(2)O_(3).The calculation results of optical properties show that the absorption coefficient and reflectance of Lu-dopedβ-Ga_(2)O_(3)at a doping concentration of 12.5 at%and Lu-Eu co dopedβ-Ga_(2)O_(3)at a doping concentration of 25 at%are stronger than those of intrinsicβ-Ga_(2)O_(3)in the low energy region.The absorption coefficient and reflectance of Lu-Eu-dopedβ-Ga_(2)O_(3)are slightly stronger than Lu-dopedβ-Ga_(2)O_(3),indicating that Lu-Eu co-dopedβ-Ga_(2)O_(3)materials are likely to be used in the manufacture of infrared photoelectronic devices.
作者
邹梦真
肖清泉
姚云美
付莎莎
叶建峰
唐华著
谢泉
ZOU Meng-Zhen;XIAO Qing-Quan;YAO Yun-Mei;FU Sha-Sha;YE Jian-Feng;TANG Hua-Zhu;XIE Quan(Institute of Advanced Optoelectronic Materials and Technology,College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处
《原子与分子物理学报》
北大核心
2024年第3期144-151,共8页
Journal of Atomic and Molecular Physics
基金
贵州大学智能制造产教融合创新平台及研究生联合培养基地建设项目(2020-520000-83-01-324061)
贵州省留学回国人员科技活动择优资助项目([2018]09)
贵州省高层次创新型人才培养项目([2015]4015)。