期刊文献+

基于EMD-AO-DELM的光伏功率预测算法 被引量:1

EMD-AO-DELM based PV Power Prediction Algorithm
在线阅读 下载PDF
导出
摘要 为提高光伏功率预测精确度,提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)-天鹰优化器(Aquila Optimizer,AO)-深度极限学习机(Deep Extreme Learning Machine,DELM)的组合光伏功率预测模型.该算法对光伏发电影响因素进行分析筛选,选出与光伏输出功率高度相关的因素作为输入变量,并采用经验模态分解(EMD)将光伏原始功率数据分解为多个特征模态函数(Intrinsic Mode Function,IMF).然后,将分解得到的IMF分量分别输入DELM预测模型,同时通过AO优化算法对DELM初始输入权重进行优化,从而提高深度极限学习机的泛化能力.最后,将各IMF分量预测结果叠加求和得到最终预测结果.通过仿真结果表明,本文提出的EMD-AO-DELM预测模型,相较于单一DELM模型具有更好的预测精度,证明了所提方法的有效性. To improve the accuracy of PV power prediction,this paper proposes a combined PV power prediction model based on Empirical Mode Decomposition(EMD)-Aquila Optimizer(AO)-Deep Extreme Learning Machine(DELM).The algorithm analyzes and filters the factors influencing PV power generation,selects the factors that are highly correlated with PV output power as input,and decomposes the PV raw power data into multiple eigenmode functions(IMF)by using empirical mode decomposition(EMD).Then the decomposed IMF components are input into the DELM prediction model separately,while the initial input weights of DELM are optimized by the AO optimization algorithm,so as to improve the generalization ability of the deep limit learning machine.Finally,the prediction results of each of the IMF components are superimposed and summed up to obtain the final prediction results.The simulation results show that the EMD-AO-DELM prediction model proposed in this paper has better prediction accuracy than the single DELM model,which proves the effectiveness of the proposed method.
作者 曹哲 赵葵银 王田宇 黄玮杰 司孟娇 林国汉 CAO Zhe;ZHAO Kuiyin;WANG Tianyu;HUANG Weijie;SI Mengjiao;LIN Guohan(College of Electrical and Information Engineering,Hunan Institute of Engineering,Xiangtan 411104,China)
出处 《湖南工程学院学报(自然科学版)》 2023年第4期6-14,共9页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 湖南省科技创新计划重点项目(2020RC5019) 湖南省自然科学基金项目(2022JJ50122).
关键词 光伏发电 预测算法 经验模态分解 深度极限学习机 photovoltaic power generation prediction algorithm empirical mode decomposition deep extreme learning machine
  • 相关文献

参考文献10

二级参考文献140

  • 1孟良,时珉,胡文平,尹瑞,杨潇,黄晓琼.高渗透率分布式光伏接入对配电网的影响[J].河北电力技术,2019,38(2):1-3. 被引量:9
  • 2张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406. 被引量:112
  • 3Vapnik VN.An overview of statistical learning theory[].IEEE Transactions on Neural Networks.1999
  • 4Platt J C.Fast training of support vector machines using sequential minimal optimization[].Advances in Kernel Methods: support vector learning.1999
  • 5LORENZ E,HURKA J,HEINEMANN D,et al.Irradianceforecasting for the power prediction of grid-connectedphotovoltaic systems[].IEEE Journal of Selected Topics inApplied Earth Observations and Remote Sensing.2009
  • 6HEINEMANN D,LORENZ E,GIRODO M.Forecasting of Solar Radiation. http: //www.Energy 2meteorology.de .
  • 7Ting-Chung Yu,Hsiao-Tse Chang.The forecast of the electrical energy generated by photovoltaic systems using neural network method[].International Conference on Electric Information and Control Engineering(ICEICE).2011
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323: 533-536.
  • 9Hagan M T, Menhaj M B. Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw, 1994, 5:989-993.
  • 10Wilamowski B M, Yu H. Neural network learning without backpropagation. IEEE Trans Neural Netw, 2010, 21: 1793-1803.

共引文献198

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部