期刊文献+

基于支持向量机与特征降维的直流断路器机械故障诊断技术研究 被引量:5

Research on Mechanical Fault Diagnosis Technology of DC Circuit Breaker Based on Support Vector Machine and Feature Dimension Reduction
在线阅读 下载PDF
导出
摘要 直流断路器机械故障诊断算法是直流断路器机械状态在线监测系统的核心部分。文中进行了直流断路器机械故障模拟实验,采集不同故障下的线圈电流及振动信号,对其进行特征提取后,将电流特征、振动短时能量特征、小波包频带能量特征排列组合,利用支持向量机构建故障诊断模型。文中使用主成分分析法及Relief⁃F算法对不同特征组合降维,进一步分析特征组合降维后的诊断效果,并通过K⁃Fold交叉验证算法评估单一特征和特征组合训练输出的诊断模型选取分类性能最优的诊断模型。 The mechanical fault diagnosis algorithm of DC circuit breaker is the core part of on⁃line monitoring sys⁃tem of mechanical status of DC circuit breaker.In this paper,the mechanical fault simulation experiment of DC cir⁃cuit breaker is performed.The coil current and vibration signals under different faults are collected.After extraction of its feature,the current feature,vibration short⁃time energy feature and wavelet packet frequency band energy feature are permuted and combined and the fault diagnosis model is constructed by using the support vector machined.In this paper,the principal component analysis(PCA)method and Relief⁃F algorithm are used for dimensionality reduction of different feature combinations to analyze further the diagnosis effect after dimensionality reduction of feature com⁃binations.Moreover,the K⁃Fold cross validation algorithm is used to assesses the diagnosis model which is output by the single feature and feature combination training output so to select the diagnosis model with the optimal classifica⁃tion performance.
作者 夏加富 叶奕君 郭嘉俊 谭佳明 杨爱军 王小华 荣命哲 XIA Jiafu;YE Yijun;GUO Jiajun;TAN Jiaming;YANG Aijun;WANG Xiaohua;RONG Mingzhe(China Wuhan Institute of Marine Electric Propulsion,Wuhan 430064,China;State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《高压电器》 CAS CSCD 北大核心 2024年第2期51-61,共11页 High Voltage Apparatus
基金 国家自然科学基金(U2166214,52207170) 陕西省重点研发计划(2022GXLH⁃01⁃11) 陕西省自然科学基础研究计划(2023⁃JC⁃JQ⁃41) 电工材料电气绝缘全国重点实验室(EIPE23111,EIPE23408,EIPE23314)资助项目。
关键词 直流断路器 机械故障诊断 支持向量机 特征降维 交叉验证 DC circuit breaker mechanical fault diagnosis support vector machine feature dimension reduc⁃tion cross validation
  • 相关文献

参考文献18

二级参考文献250

共引文献426

同被引文献48

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部