期刊文献+

基于多组实时数据回归分析的空调负荷预测方法研究 被引量:2

Research on air conditioning load forecasting method based on multiple real time data regression analysis
在线阅读 下载PDF
导出
摘要 传统的空调负荷预测方法存在一定局限性或计算工作量大、周期较长等问题,本文提出一种利用多组实时数据进行回归分析预测空调负荷方法,在规划前期条件不确定时,通过多对组数据的相关分析,判断供能面积与冷负荷、热负荷的相关性,拟合回归方程,并应用于实际工程进行空调负荷预测,通过与传统空调负荷预测方法计算值进行比对,预测结果相对误差5%以内。该方法在一定范围条件下,可作为一种前期空调负荷估算的实用方法。 Traditional air conditioning load forecasting methods have certain limitations or problems such as high computational workload and long cycle.This article proposes to use multiple sets of real-time data for regression analysis and prediction of air conditioning load when the conditions in the early planning stage are uncertain.Through correlation analysis of multiple pairs of data,the correlation between energy supply area,cooling capacity,and heating capacity is judged,and the regression equation is fitted.It is applied to actual engineering for air conditioning load prediction.By comparing the calculated values with traditional air conditioning load prediction methods,the relative error is found to be within 5%.This method can be used as a practical method for early load estimation under certain conditions.
作者 肖暾 XIAO Tun(East China Architectural Design&Research Institute Co.,Ltd.,Shanghai 200011,China)
出处 《能源工程》 2024年第1期13-17,共5页 Energy Engineering
关键词 负荷预测方法 能源中心负荷 回归分析 相关性 load forecasting methods energy center loads regression analysis correlation
  • 相关文献

参考文献4

二级参考文献55

  • 1李永安.建筑群空调冷负荷的确定[J].山东建筑大学学报,1992,18(3):34-38. 被引量:1
  • 2曹双华,曹家枞,李涛,沈晓青.基于小波变换的神经网络空调负荷预测研究[J].暖通空调,2005,35(4):13-17. 被引量:13
  • 3马益民.应用天气预报信息预测冰蓄冷空调蓄冰量的研究[J].能源与环境,2005(3):33-35. 被引量:1
  • 4李爱旗,白雪莲.居住建筑能耗预测分析方法的研究[J].建筑科学,2007,23(8):32-35. 被引量:14
  • 5刘晨辉.电力系统负荷预报理论与方法[M].哈尔滨:哈尔滨工业大学出版社,1987..
  • 6Ben-Nakhi A E, Mahmoud M A. Cooling load prediction for buildings using general regression neural networks [ J ]. Energy Conversion and Management, 2004,45 (13/14) : 2127- 2141.
  • 7Hou Z J, Lian Z W, Yao Y, et al. Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique [J ]. Applied Energy, 2006, 83 ( 9 ) : 1033-1044.
  • 8Li Q, Meng Q L, Cai J J, et al. Applying support vector machine to predict hourly cooling load in the building [ J ]. Applied Energy, 2009, 86 ( 10 ) .. 2249- 2256.
  • 9Wang X M, Chen Z K, Yang C Z, et al. Gray predicting theory and application of energy consumption of building heat-moisture system[J]. Building and Environment, 1999,34(4) .. 417- 420.
  • 10Yiu J C M, Wang S W. Multiple ARMAX modeling scheme for forecasting air conditioning system performance[J]. Energy Conversion and Management, 2007,48 (8) : 2276- 2285.

共引文献29

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部