期刊文献+

Active Machine Learning for Chemical Engineers:A Bright Future Lies Ahead! 被引量:1

在线阅读 下载PDF
导出
摘要 By combining machine learning with the design of experiments,thereby achieving so-called active machine learning,more efficient and cheaper research can be conducted.Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering.While active machine learning algorithms are maturing,their applications are falling behind.In this article,three types of challenges presented by active machine learning—namely,convincing the experimental researcher,the flexibility of data creation,and the robustness of active machine learning algorithms—are identified,and ways to overcome them are discussed.A bright future lies ahead for active machine learning in chemical engineering,thanks to increasing automation and more efficient algorithms that can drive novel discoveries.
出处 《Engineering》 SCIE EI CAS CSCD 2023年第8期23-30,共8页 工程(英文)
基金 financial support from the Fund for Scientific Research Flanders(FWO Flanders)through the doctoral fellowship grants(1185822N,1S45522N,and 3F018119) funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(818607)。
  • 相关文献

参考文献6

二级参考文献10

共引文献77

同被引文献45

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部