摘要
军事目标的红外辐射特征取决于红外大气窗口的发射率和目标温度水平。传统红外隐身涂层在全红外波段保持低发射率但并不能通过非大气窗口辐射散热。本文利用深度神经网络设计出一组由锗、铂、硅顺次排列,可用于兼容辐射散热的红外隐身多层薄膜结构。分析表明:该结构在3~5μm和8~14μm的红外大气窗口探测波段中具有0.20和0.23的低平均发射率,而在5~8μm的非大气窗口波段中具有0.87的高平均发射率,可兼容辐射散热,并且该兼容性对偏振和方向不敏感。该薄膜结构光谱选择性的微观机理可归因于锗层的选择性透过、铂–硅–钛合金形成的Fabry-Perot共振,以及铂层和钛合金基底的本征吸收。
The infrared radiative signature of the military target is determined by the emissivity of the infrared atmospheric window and the temperature level.Conventional infrared stealth coatings exhibit low emissivity across the whole infrared band but lack effectively radiative cooling through non-atmospheric window.This work designs a set of infrared stealth multilayered films structure based on deep neural network,incorporating germanium,platinum,and silicon arranged in order for compatible radiative cooling.The analysis reveals that the structure achieves a low average emissivity of 0.20/0.23 within the infrared atmospheric window detection bands of 3∼5µm and 8∼14µm,while maintaining a high average emissivity of 0.87 within the non-atmospheric window band of 5∼8µm,thus facilitating efficient radiative cooling.Furthermore,the designed structure shows strong robustness regarding the polarization and incidence angle of the incoming electromagnetic wave.The spectral selectivity of the structure is attributed to the selective transmission of the germanium layer,the Fabry-Perot resonance generated by the Pt-Si-Titanium alloy TC4,as well as the intrinsic absorption of the Pt layer and TC4 substrate.
作者
张鲁豫
胡兰芳
高菲菲
张文杰
ZHANG Luyu;HU Lanfang;GAO Feifei;ZHANG Wenjie(School of Energy and Power Engineering,Shandong University,Jinan 250061,China;Institute of Microsatellite Innovation,Chinese Academy of Sciences,Shanghai 201306,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2024年第2期514-519,共6页
Journal of Engineering Thermophysics
基金
国家自然科学基金(No.52006127)
山东省自然科学基金(No.ZR2020QE194)。
关键词
辐射特性调控
深度神经网络
多层薄膜结构
modulation of radiative properties
deep neural network
multilayered films structure