摘要
选取TA10钛合金作为研究材料,设置不同退火温度对TA10钛合金进行退火处理,随后使用光学显微镜、扫描电子显微镜、室温拉伸性能测试等手段,研究退火温度对TA10钛合金组织与力学性能的影响。结果表明:当退火温度为两相区时,组织由初生α相以及β转变组织构成,β转变组织中包含次生α相与残余β相。退火温度达到单相区后,组织以粗大β晶粒为主,并出现三叉状晶界。随着退火温度的升高,合金强度随之升高,而塑性性能随之降低,发现等轴组织塑性性能最佳,细片层β转变组织强度最大,双态组织具有优异的综合力学性能。当退火温度位于两相区时,拉伸断口微观主要由大量等轴状韧窝组成,同时包含二次裂纹与撕裂棱,当退火温度达到单相区后,断口形貌以结晶状岩石形貌为主。
TA10 titanium alloy was selected as the research material,and different annealing temperatures were set for annealing treatment of TA10 titanium alloy.Then,the effects of annealing temperature on the microstructure and mechanical properties of TA10 titanium alloy were studied by means of optical microscope,scanning electron microscope and tensile property test at room temperature.The results show that when the annealing temperature is in the two-phase region,the microstructure is composed of primaryαphase andβ-transformed microstructure.Theβ-transformed microstructure contains secondaryαphase and residualβphase.After the annealing temperature reaches the single-phase region,the microstructure is dominated by coarseβgrains and trident grain boundaries appear.With the increase of annealing temperature,the strength of the alloy increases,while the plasticity decreases.It is found that the plasticity of equiaxed structure is the best,the strength of fine lamellarβtransformation structure is the largest,and the bimodal structure has excellent comprehensive mechanical properties.When the annealing temperature is in the two-phase region,the tensile fracture microstructure is mainly composed of a large number of equiaxed dimples,including secondary cracks and tearing edges.When the annealing temperature reaches the single-phase region,the fracture morphology is mainly crystalline rock morphology.
作者
郭新
张明玉
丁旭功
伏轩平
李晓霞
GUO Xin;ZHANG Mingyu;DING Xugong;FU Xuanping;LI Xiaoxia(Xinjiang Xiangrun New Materials Technology Co.,Ltd.,Hami 839000,China)
出处
《湖南有色金属》
CAS
2024年第1期64-67,共4页
Hunan Nonferrous Metals
基金
自治区重点研发计划项目(2022B01029)
自治区创新环境(人才、基地)建设专项—天山创新团队计划(2020D14041)。
关键词
TA10钛合金
微观组织
拉伸性能
断口微观形貌
TA10 titanium alloy
microstructure
tensile properties
fracture microstructure