期刊文献+

基于预测风险场模型的智能车辆换道路径规划

Intelligent Vehicle Lane Changing Path Planning Based on Predictive Risk Field Model
在线阅读 下载PDF
导出
摘要 针对智能车辆行驶环境和表达方式复杂等问题,提出了融合LSTM预测模型的智能车辆预测风险场模型。在传统势场模型基础上,考虑了动态目标行为预测信息,建立动态预测动能场,同时与道路环境中其他风险元素风险场相叠加,构建“预测风险场”统一模型。通过设计风险场代价函数完成规划轨迹簇的最小代价评估,获得最优路径规划轨迹。为验证该方法的有效性,进行了联合仿真和实车验证。结果表明,预测风险场模型有效表达了复杂行驶环境的交通态势,选取的最优路径提升了其综合安全性。 In view of complex driving environments and expression methods of intelligent vehicles,a predictive risk field model for intelligent vehicles incorporating long short term memory(LSTM)predic-tion model was proposed.Based on the traditional potential field model,the predictive information about dynamic target behaviors was considered,and the kinetic energy field of dynamic prediction was established.In addition,the kinetic energy field was superimposed with the risk field of other risk ele-ments in the road environment to construct a unified model,namely the predictive risk field.By design-ing the cost function of the risk field,the minimum cost evaluation of the planning trajectory cluster was completed,and the optimal path planning trajectory was obtained.In order to verify the effectiveness of the method,joint simulations and real-vehicle verification were conducted.The experimental results show that the predictive risk field model effectively expresses the traffic situation in the complex driving environment,and the selected optimal paths improve comprehensive safety.
作者 杨正才 谷师锐 吴浩然 孙文 Yang Zhengcai;Gu Shirui;Wu Haoran;Sun Wen(School of Automotive Engineering,Hubei University of Automotive Technology,Shiyan 442002,China;Hubei Key Laboratory of Automotive Power Train and Electronic Control,Shiyan 442002,China;School of Automotive Engineering,Changzhou Institute of Technology,Changzhou 213032,China)
出处 《湖北汽车工业学院学报》 2024年第1期7-12,17,共7页 Journal of Hubei University Of Automotive Technology
基金 中央引导地方科技发展专项(2022BGE248) 湖北汽车工业学院博士科研启动基金(BK202215)。
关键词 路径规划 轨迹预测 LSTM 预测风险场 path planning trajectory prediction LSTM predicted risk field
  • 相关文献

参考文献8

二级参考文献44

  • 1杨达,吕蒙,戴力源,王啸文,郭茜.车联网环境下自动驾驶车辆车道选择决策模型[J].中国公路学报,2022,35(4):243-255. 被引量:15
  • 2李林恒,甘婧,曲栩,冒培培,冉斌.智能网联环境下基于安全势场理论的车辆跟驰模型[J].中国公路学报,2019,32(12):76-87. 被引量:39
  • 3金立生,Bartvan Arem,杨双宾,Mascha van der Voort,Martijn Tideman.高速公路汽车辅助驾驶安全换道模型[J].吉林大学学报(工学版),2009,39(3):582-586. 被引量:30
  • 4何立萍,王子滨.美国发展军民两用技术实例(连载)[J].航天技术与民品,1997(3):32-34. 被引量:2
  • 5JIA Yu-han , WU Iian-ping, An Improved Car-follow?ing Model Considering Variable Safety Headway Dis?tance[J]. Physics Essays,2014,27(4) :616-619.
  • 6LEE K, PENG H. Evaluation of Automotive Forward Collision Warning and Collision Avoidance Algo?rithms[J]. Vehicle System Dynamics, 2005,43 (10) : 735-75l.
  • 7OLFA TI-SABER R. Flocking for Multi-agent Dynamic Systems:Algorithms and Theory[J]. IEEE Transactions on Automatic Control ,2006 ,51(3) :401-420.
  • 8BYME S,NAEEM W,FERGUSON S. Improved APF Strategies for Dual-arm Local Motion Planning [n. Transactions of the Institute of Measurement and Control, 2015,37 (1) : 73-90.
  • 9YANG Zhao-sheng , YU Yao, YU De-xin , et a1. APF?based Car Following Behavior Considering Lateral Distance [J]. Advances in Mechanical Engineering, 2013,5:207104-207112.
  • 10NI Dai-heng. A Unified Perspective on Traffic Flow Theory, Part I: The Field Theory[J]. Applied Mathe?matical Sciences, 2013,7 (39) : 1929-1946.

共引文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部