期刊文献+

Knowledge Graph Enhanced Transformers for Diagnosis Generation of Chinese Medicine 被引量:3

原文传递
导出
摘要 Chinese medicine(CM)diagnosis intellectualization is one of the hotspots in the research of CM modernization.The traditional CM intelligent diagnosis models transform the CM diagnosis issues into classification issues,however,it is difficult to solve the problems such as excessive or similar categories.With the development of natural language processing techniques,text generation technique has become increasingly mature.In this study,we aimed to establish the CM diagnosis generation model by transforming the CM diagnosis issues into text generation issues.The semantic context characteristic learning capacity was enhanced referring to Bidirectional Long Short-Term Memory(BILSTM)with Transformer as the backbone network.Meanwhile,the CM diagnosis generation model Knowledge Graph Enhanced Transformer(KGET)was established by introducing the knowledge in medical field to enhance the inferential capability.The KGET model was established based on 566 CM case texts,and was compared with the classic text generation models including Long Short-Term Memory sequence-to-sequence(LSTM-seq2seq),Bidirectional and Auto-Regression Transformer(BART),and Chinese Pre-trained Unbalanced Transformer(CPT),so as to analyze the model manifestations.Finally,the ablation experiments were performed to explore the influence of the optimized part on the KGET model.The results of Bilingual Evaluation Understudy(BLEU),Recall-Oriented Understudy for Gisting Evaluation 1(ROUGE1),ROUGE2 and Edit distance of KGET model were 45.85,73.93,54.59 and 7.12,respectively in this study.Compared with LSTM-seq2seq,BART and CPT models,the KGET model was higher in BLEU,ROUGE1 and ROUGE2 by 6.00–17.09,1.65–9.39 and 0.51–17.62,respectively,and lower in Edit distance by 0.47–3.21.The ablation experiment results revealed that introduction of BILSTM model and prior knowledge could significantly increase the model performance.Additionally,the manual assessment indicated that the CM diagnosis results of the KGET model used in this study were highly consistent with the practical diagnosis results.In conclusion,text generation technology can be effectively applied to CM diagnostic modeling.It can effectively avoid the problem of poor diagnostic performance caused by excessive and similar categories in traditional CM diagnostic classification models.CM diagnostic text generation technology has broad application prospects in the future.
出处 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2024年第3期267-276,共10页 中国结合医学杂志(英文版)
基金 Supported by the National Natural Science Foundation of China(No.82174276 and 82074580) the Key Research and Development Program of Jiangsu Province(No.BE2022712) China Postdoctoral Foundation(No.2021M701674) Postdoctoral Research Program of Jiangsu Province(No.2021K457C) Qinglan Project of Jiangsu Universities 2021。
  • 相关文献

同被引文献70

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部