摘要
文章基于2000-2021年沪深A股上市公司数据,将会计指标带入XGBoost模型去预测A股挂牌公司的财务风险。通过构建Benford因子,将财务指标和Benford因子带入XGBoost模型,并和未加因子的XGBoost风险预警模型的预测效果进行比较。并将带有Benford因子的数据分别带入极端森林、DT、GBDT、KNN、逻辑回归等模型,与XGBoost模型的预测效果进行对比。研究发现,Benford因子可以提高数据质量从而提高模型的准确度。并且Benford-XGBoost模型的预测效果要优于其他带因子的模型。
基金
国家自然科学基金(项目编号:72061008)
广西自然科学基金(项目编号:2018GXNSFAA294123)
广西可信软件重点实验室基金(项目编号:kx201923)。