期刊文献+

基于MRI的影像组学模型在鉴别乳腺导管原位癌与导管原位癌伴微浸润中的价值 被引量:2

Radiomics Nomogram for Diagnosis of DCIS and DCIS with Microinvasion on MRI
原文传递
导出
摘要 目的建立基于乳腺MRI区分乳腺导管原位癌(DCIS)与导管原位癌伴微浸润(DCISM)的影像组学模型并验证其价值。方法回顾性分析87例(DCISM 32例,DCIS 55例)女性,按7∶3分为训练组和验证组。分别搜集MRI图像及临床、病理和影像学资料。采用3D Slicer软件手动勾画乳腺癌灶的3D感兴趣区(ROI)并提取特征,使用最大相关性最小冗余性算法和最小绝对收缩和选择算法(LASSO)回归选择特征并建立影像组学模型。根据临床和影像学特征建立临床模型。基于影像组学评分(Radscore)和临床模型建立联合模型。结果区分DCIS是否伴微浸润的独立影响因子包含时间-信号强度曲线(TIC)和表观扩散系数(ADC)。尽管临床模型和影像组学模型的曲线下面积(AUC)没有显著差异(分别为0.760和0.830),结合Radscore和临床影像学特征的联合模型表现了鉴别DCIS与DCISM的良好效能(AUC为0.840)。结论结合Radscore和临床影像学特征的联合模型可为鉴别DCIS与DCISM提供新的手段。 Objective To build and verify a nomogram for diagnosis microinvasion of DCIS ground on magnetic resonance imaging(MRI).Methods A total of 87(32 of DCIS with microinvasion and 55 of DCIS)women were retrospectively analyzed and were divided into training cohort and testing cohort on the basis of 7∶3.Clinical,pathological and MRI imaging features were collected.We delineated region of interest manually on primary lesion on MRI,and used RedundancyMaximum Relevance and Least absolute shrinkage and selection operator to select the features and build the radiomics model.Radiomics score(Radscore)were obtained from radiomics model.Clinical model was built on the basis of the clinical and radiological features.The combined nomogram was built based on radscore and clinical radiological features.We compared the diagnostic efficiency and clinical adaptability of different models.Results Time signal intensity curve and apparent diffusion coefficient were independent risk factors for diagnosis microinvasion of DCIS.The combined nomogram incorporating radscore and clinical radiological features showed a good calibration for diagnosis microinvasion of DCIS(0.860 of AUC).Although our result showed no significant difference with clinical model and radiomics model(0.760 and 0.830 of AUC).Conclusion Our result shows that the combined nomogram built with MRI and clinical radiological features has potential to identify the microinvasion of DCIS.
作者 韩珺琪 华辉 王晓琳 田雅琪 张濬韬 彭琪琪 陈静静 HAN Junqi;HUA Hui;WANG Xiaolin(Department of Breast Imaging,The Affiliated Hospital of Qingdao University,Qingdao,Shandong Province 266000,P.R.China)
出处 《临床放射学杂志》 北大核心 2024年第2期196-203,共8页 Journal of Clinical Radiology
基金 国家自然科学基金资助项目(编号:8207071895)。
关键词 导管原位癌伴微浸润 导管原位癌 磁共振成像 影像组学 诺莫图 Ductal carcinoma in situ with microinvasion Ductal carcinoma in situ Magnetic resonance imaging Radiomics Nomogram
  • 相关文献

参考文献3

二级参考文献22

  • 1Winchester DP,Jeske JM,Goldschmidt RA. The diagnosis and man- agement of ductal carcinoma in situ of the breast [ J ]. Am Cancer J Clin, 2000,50 : 184-200.
  • 2Stephen A, Feig MD. Ductal carcinoma in situ. Implications for screening mammography [ J]. Radiologic Clinics of North America, 2000,38:653 68.
  • 3American College of Radiology. BI-RADS-Mammography. In: ACR Breast Imaging and Data Systerm, Breast Imaging Atlas. 4th ed. Re- ston, Va :2003,230-234.
  • 4Muttarak M, Pojchamarnwiputh S, Chaiwan B. Breast carcinomas: why are they missed [ J ]. Singapore Medical Journal,2006,47.851- 857.
  • 5Malich A, Fischer DR, Bittcher J. CAD for mammography : the tech- nique,results,current role and further developments [ J ]. European Journal of Radiology,2006,16. 1449-1460 .
  • 6Cheng HD, Cai X, Chert X, et al. Computer-Aided Delection and Classification of Micrnca|cifications in Mammograms : A Survey [J ]. Pattern Recognition ,2003,36:2967-2991.
  • 7Wei D, Chan HI, Helvie MA, et al. Classification of mass and normal breast tissue on digital mammograms : multi resolution texture analysis [ J ]. Medical Physics, 1995,22 : 1501-1513.
  • 8Shoo YZ, Liu LZ, Bie MJ, et ah Characterizing the clustered micro- calcifications on mammograms to predict the pathological classifica- tim and grading: a mathematical modeling approach. Digit hna- ging,2011,24:764-771.
  • 9El-Naqa I, Yang Y, Werniek MN, el al. A support vector machine approach tot detection of mieroealeifications [ J ]. IEEE Trans Med hnaging,2002,21 : 1552-1563.
  • 10Boeehi L,Nori J. Shape analysis of microealeifieations using Radon transform [ J ]. Medical Engineering &Physics, 2007,29 : 691 698.

共引文献29

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部