期刊文献+

基于样本相关性的层次特征选择算法 被引量:3

Hierarchical feature selection algorithm based on instance correlations
原文传递
导出
摘要 提出了基于样本相关性的层次特征选择算法(hierarchical feature selection algorithm based on instance correlations,HFSIC)以进一步提高分层分类特征选择算法的性能。在使用稀疏正则项去除不相关特征之后,将层次结构中的父子关系与特征空间中样本之间的重构关系相结合,学习同一子树下各类别的样本相关性,利用递归正则优化输出特征权重矩阵。在衡量样本相关性时,将重构系数矩阵整合到训练模型中,同时利用l2,1范数去除不相关的和冗余的特征。使用加速近端梯度法解决所提模型的优化问题,并在多个评价指标下评估所提算法的优越性。实验结果表明,所提方法在5个数据集上的表现优于其他算法,验证了该算法的有效性。 A hierarchical feature selection algorithm based on instance correlations(HFSIC)is proposed to further improve the performance of the hierarchical feature selection algorithm.After using sparse regularization items to remove irrelevant features,the parent-child relationship in the hierarchical structure with the reconstruction relationship between samples in the feature space are combined.The correlation of samples of each category under the same subtree are learned.Recursive regularization to optimize the output features weight matrix is used.When measuring the sample correlation,the reconstructed coefficient matrix is integrated into the training model,and the norm is used to remove irrelevant and redundant features.The optimization problem of the proposed model is solved using the accelerated proximal gradient method,and the superiority of the proposed algorithm is evaluated under multiple evaluation metrics.The experimental results show that the proposed method outperforms the other algorithms on five datasets.The test verifies the effectiveness of the proposed algorithm.
作者 史春雨 毛煜 刘浩阳 林耀进 Chunyu SHI;Yu MAO;Haoyang LIU;Yaojin LIN(School of Computer Science,Minnan Normal University,Zhangzhou 363000,Fujian,China;Key Laboratory of Data Science and Intelligence Application(Minnan Normal University),Zhangzhou 363000,Fujian,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2024年第3期61-70,共10页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(62076116) 福建省自然科学基金资助项目(2022J01914)。
关键词 特征选择 层次结构 样本相关性 递归正则化 feature selection hierarchical structure instance correlation recursive regularization
  • 相关文献

参考文献4

二级参考文献29

  • 1Guttman A. R-trees : A Dynamic Index Structure for Spatial Searching [ M ]. USA : ACM Press, 1984.
  • 2Bentley J L. K-d trees for semidynamic point sets[ A]. Pro- ceedings of the Sixth Annual Symposium on Computational Geometry[ C]. USA:ACM Press, 1990. 187 - 197.
  • 3Gionis A, Indyk P, Motwani R. Similarity search in high di- mensions via hashing[ A]. Proceedings Of the 25th Interna- tional Conference on Very Large Data Bases [ C]. USA: VLDB Press, 1999, Vol 99.518 - 529.
  • 4Indyk P, Motwani R. Approximate nearest neighbors:to- wards removing the curse of dimensionality [ A]. Proceed- ings of the Thirtieth Annual ACM Symposium on Theory of Computing [ C ]. USA: ACM Press, 1998. 604 - 613.
  • 5Qian Jiangbo, Zhu Qiang, Chen Huahui. Multi-granularity locality-sensitive bloom filter[ J ]. IEEE Transactions on Computers ,2015,64(12) :3500 - 3514. L.
  • 6v Q, Josephson W, Wang Z, et al. Multi-probe LSH: effi- cient indexing for high-dimensional similarity search[ A ]. Proceedings of the 33rd International Conference on Very Large Data Bases [ C ]. USA : VLDB Endowment Press, 2007. 950 - 961.
  • 7Gan Junhao, et al. Locality-sensitive hashing scheme based on dynamic collision counting [ A]. Proceedings of the ACM SIGMOD International Conference on Management of Data[ C]. USA:ACM Press,2012. 1 - 12.
  • 8Hadoop: Open-source Implementation of mapreduce [ OL ]. http ://lucene. apache, org/hadoop/. 2012.
  • 9Koga H, Oguri M, Watanabe T. MIXED-LSH : Reductionof remote accesses in distributed locality-sensitive hashing based on Ll-distance [ A ]. Proceedings of IEEE 26th In- ternational Conference on Advanced Information Networ- king and Applications (AINA) [ C ]. USA : IEEE Press, 2012. 175 - 182.
  • 10Bahmani B, Goel A, Shinde R. Efficient distributed locali- ty sensitive hashing[ A]. Proceedings of the 21st ACM In- ternational Conference on Information and Knowledge Management[ C]. USA:ACM Press ,2012. 2174 -2178.

共引文献28

同被引文献15

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部