期刊文献+

Solar image reconstruction method under atmospheric turbulence at Fuxian Lake Solar Observatory

在线阅读 下载PDF
导出
摘要 Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.
出处 《Astronomical Techniques and Instruments》 CSCD 2024年第2期128-139,共12页 天文技术与仪器(英文)
基金 sponsored by the National Natural Science Foundation of China(NSFC)under the grant numbers(11773073,11873027,U2031140,11833010) Yunnan Key Laboratory of Solar Physics and Space Science under the number 202205AG070009 Yunnan Provincial Science and Technology Department(202103AD50013,202105AB160001,202305AH340002) the GHfund A202302013242 and CAS“Light of West China”Program 202305AS350029.
  • 相关文献

参考文献12

二级参考文献54

  • 1林京,刘忠,金振宇.天文高分辨像复原技术检测地基天文光学望远镜成像质量[J].天文研究与技术,2004,1(3):188-195. 被引量:5
  • 2仇朴章.天文高分辨率像复原[J].天文学进展,1989,7(4):328-336. 被引量:3
  • 3R A Carreras, G Tarr, S Restaino, et al. Concurrent computation of Zernike coefficients used in a Phase Diversity algorithm for optical aberration correction [ J]. SPIE, 1994, 2315:363 -370.
  • 4Jean J Dolne, Harold B Schall. Fundamental performance bounds of phase diversity blind deconvolution algorithm for various diversity polynomials, noise statistics, and scene size [ J ]. SPIE, 2005, 5793: 118-128.
  • 5Jean J Dolne, Harold B Schall. Information theoretic bounds of phase diversity for diversity polynomials and noise statistics [J]. SPIE, 2005, 5896:145-156.
  • 6Jean J Dolne, Harold B Schall. Information theoretic bounds for determining optimum aberration strengths for various diversity polynomials and noise statistics for phase diversity [ J ]. SPIE, 2005, 5896:5896011 - 12.
  • 7R G Paxman, T J Schulz, J R Fienup. Joint estimation of object and aberrations by using phase diversity [J]. Opt. Soc. Am., 1992, A9: 1072-1085.
  • 8L Meynadier, V Michau, MT Velluet, et al. Noise Propagation in Wave-Front Sensing with Phase Diversity [J]. Appl. Opt., 1999, 38:4967-4979.
  • 9C R Vogel, T Chan, R J Plemmons. Fast algorithms for phase-diversity-based blind deconvolution [J]. SPIE, 1998, 3353:994-1005.
  • 10C R Vogel. A limited memory BFGS method for an inverse problem in atmospheric imaging [C]//P C Hansen, B H Jacobsen, K Mosegaard, ed. in Methods and Applications of Inversion. Lecture Notes in Earth Sciences, 2000, 92 : 292 - 304, Springer-Verlag.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部