期刊文献+

MSC-YOLO:Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View

在线阅读 下载PDF
导出
摘要 Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.
出处 《Computers, Materials & Continua》 SCIE EI 2024年第4期983-1003,共21页 计算机、材料和连续体(英文)
基金 the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014) National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024) the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012) Hainan Provincial Natural Science Foundation of China(Grant No.620MS021) Youth Foundation Project of Hainan Natural Science Foundation(621QN211).
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部