期刊文献+

一种光滑型TENO非线性加权的WCNS格式 被引量:1

Smooth TENO nonlinear weighting for WCNS scheme
原文传递
导出
摘要 可压缩湍流流动广泛存在于航空航天领域,流场中激波间断与多尺度湍流共存使得高精度数值模拟面临巨大挑战。为了提升复杂湍流模拟的精度,在加权紧致非线性格式(WCNS)框架下,发展基于目标基本无振荡(TENO)格式加权策略的WCNS-T格式,并进一步从兼顾数值计算收敛性和精度的角度提出光滑型S-TENO非线性加权方法及其WCNS-ST格式。通过频谱特性分析、一维Lax和Osher-Shu算例、二维双Mach反射算例测试了发展的WCNS-ST格式对于间断与高频波的捕捉能力;通过二维圆柱层流绕流与三维30P30N多段翼型的自适应湍流模拟,重点对比研究了原始TENO加权与当前的S-TENO加权在黏性复杂流动中的收敛特性及其对数值计算结果的影响。研究发现,当前提出的S-TENO非线性加权保持了原始TENO非线性加权的色散耗散特性及激波捕捉方面的能力,同时明显改善了WCNS-JS和WCNS-Z格式中非线性耗散过大的问题;S-TENO非线性加权显著改善了原始TENO非线性加权中权值阶跃导致的收敛困难问题。以上结果表明,当前提出的光滑型S-TENO非线性加权及其WCNS-ST格式在实际复杂构型流动数值模拟中兼顾精度和收敛性,更加适用于复杂工程应用场景。 Compressible turbulent flow widely exists in the aerospace field,and the coexistence of shock discontinuity and multi-scale turbulence in the flow field poses a challenge for high-precision numerical simulation.To improve the accuracy of complex turbulence simulation,in the framework of the Weighted Compact Nonlinear Scheme(WCNS),a WCNS-T scheme based on the Targeted Essentially Non-Oscillatory(TENO)weighting strategy is developed,and a smooth S-TENO nonlinear weighting method and its WCNS-ST scheme are further proposed from the perspectives of both numerical convergence and accuracy.The developed WCNS-ST scheme is tested for its ability to capture discontinuous and high-frequency waves through spectral analysis,one-dimensional Lax and Osher-Shu examples,and twodimensional dual Mach reflection examples.Based on further numerical tests of steady laminar flow past a circular cylinder and unsteady self-adaptive turbulence eddy simulation of a 30P30N multi-element airfoil,the convergence characteristics of the original TENO weighting and the current S-TENO weighting in viscous complex flows,as well as their impact on numerical calculation results,are compared.The results show that the proposed S-TENO nonlinear weighting maintains the dispersion and dissipation characteristics of the original TENO nonlinear weighting and its ability to capture shock waves,significantly improving the problem of excessive nonlinear dissipation in WCNS-JS and WCNS-Z schemes;meanwhile,S-TENO nonlinear weighting significantly eases the convergence difficulties caused by weight discontinuity in the original TENO nonlinear weighting.The above results indicate that the proposed smooth S-TENO nonlinear weighting and its WCNS-ST scheme take into account both accuracy and convergence in numerical simulations of complex flow configurations,making them more suitable for complex engineering applications.
作者 吴文昌 马燕凯 韩省思 闵耀兵 燕振国 WU Wenchang;MA Yankai;HAN Xingsi;MIN Yaobing;YAN Zhenguo(College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;State Key Laboratory of Aerodynamics,Mianyang 621000,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2024年第8期162-175,共14页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(92041001) 江苏省自然科学基金(BK20200069) 国家科技重大专项(2017-Ⅲ-0005-0029,J2019-Ⅲ-0015-0059)。
关键词 加权紧致非线性格式 目标基本无振荡 非线性加权 可压缩湍流模拟 高阶精度有限差分方法 weighted compact nonlinear scheme targeted essentially non-oscillatory nonlinear weighting compressible turbulence simulation high-order accurate finite differencing method
  • 相关文献

参考文献6

二级参考文献45

  • 1邓小刚.High-order accurate dissipative weighted compact nonlinear schemes[J].Science China Mathematics,2002,45(3):356-370. 被引量:12
  • 2Johnson F T, Tinoco E N, Jong Y. Thirty years of development and application of CFD at Boeing commercial airplane, Seattle,AIAA-2003-3439[R]. Reston:AIAA,2003.
  • 3Tinoco E N, Bogue D R, Kao T J, et al. Progress toward CFD for full flight envelope[J]. The Aeronautical Journal, 2005, 109(1100): 451-460.
  • 4Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences, NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
  • 5Salas M D. Digital flight: The last CFD aeronaoutical grand challenge[J]. Journal of Scientific Computing, 2006,28(2-3): 479-505.
  • 6Levy D W, Zickuhr T, Vassberg J C, et al. Summary of data from the first AIAA CFD drag prediction workshop, AIAA-2002-0841[R]. Reston: AIAA, 2002.
  • 7Laflin K R, Klausmeyer S M, Zickuhr T, et al. Data summary from the second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5): 1165-1178.
  • 8Vassberg J C, Tinoco E N, Mani M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3): 781-798.
  • 9Vassberg J C, Tinoco E N, Mani M, et al. Summary of the fourth AIAA CFD drag prediction workshop, AIAA-2010-4547[R]. Reston: AIAA, 2010.
  • 10Levy D W, Laflin K R, Tinoco E N, et al. Summary of data from the fifth AIAA CFD drag prediction workshop, AIAA-2013-0046[R]. Reston: AIAA, 2013.

共引文献45

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部