摘要
Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membranes(PEMs).In this study,a series of hybrid membranes were obtained by molecular-level hybridization of Weakley-type POM Na_(7)H_(2)LaW_(10)O_(36)(LaW_(10))clusters into sulfonated poly(aryl ether ketone sulfone)(SPAEKS).All hybrid membranes exhibited greater proton conductivity than the pristine membrane in the 30–80℃temperature range.When the doping amount of LaW 10 reached 7 wt.%,the proton conductivity of M-LaW 10^(-7)achieved 64 mS·cm^(−1)at 80℃.Lanthanide ions'high coordination number property and variable coordination environment can aid to attract more water molecules from the environment.LaW 10 and these bound water can construct denser hydrogen bonds with–SO_(3)H of SPAEKS.These intensive hydrogen bonds will facilitate the constitution of more continuous proton transport channels,and improve the proton conductivity of the hybrid membrane.This work off ers a fresh approach to using POMs containing rare-earth components in PEMs.
出处
《Tungsten》
EI
CSCD
2024年第2期454-464,共11页
钨科技(英文)
基金
financially supported by the National Natural Science Foundation of China(No.22271022)
the Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS342)
supported by the China Scholarship Council(CSC No.201802335014).