期刊文献+

INVARIANTS-PRESERVING DU FORT-FRANKEL SCHEMES AND THEIR ANALYSES FOR NONLINEAR SCHRÖDINGER EQUATIONS WITH WAVE OPERATOR

原文传递
导出
摘要 Du Fort-Frankel finite difference method(FDM)was firstly proposed for linear diffusion equations with periodic boundary conditions by Du Fort and Frankel in 1953.It is an explicit and unconditionally von Neumann stable scheme.However,there has been no research work on numerical solutions of nonlinear Schrödinger equations with wave operator by using Du Fort-Frankel-type finite difference methods(FDMs).In this study,a class of invariants-preserving Du Fort-Frankel-type FDMs are firstly proposed for one-dimensional(1D)and two-dimensional(2D)nonlinear Schrödinger equations with wave operator.By using the discrete energy method,it is shown that their solutions possess the discrete energy and mass conservative laws,and conditionally converge to exact solutions with an order of for ofο(T^(2)+h_(x)^(2)+(T/h_(x))^(2))1D problem and an order ofο(T^(2)+h_(x)^(2)+h_(Y)^(2)+(T/h_(X))^(2)+(T/h_(y))^(2))for 2D problem in H1-norm.Here,τdenotes time-step size,while,hx and hy represent spatial meshsizes in x-and y-directions,respectively.Then,by introducing a stabilized term,a type of stabilized invariants-preserving Du Fort-Frankel-type FDMs are devised.They not only preserve the discrete energies and masses,but also own much better stability than original schemes.Finally,numerical results demonstrate the theoretical analyses.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2024年第3期814-850,共37页 计算数学(英文)
基金 supported by the National Natural Science Foundation of China(Grant No.11861047) by the Natural Science Foundation of Jiangxi Province for Distinguished Young Scientists(Grant No.20212ACB211006) by the Natural Science Foundation of Jiangxi Province(Grant No.20202BABL 201005).
  • 相关文献

参考文献4

二级参考文献19

  • 1王廷春,张鲁明,陈芳启.CONSERVATIVE DIFFERENCE SCHEME BASED ON NUMERICAL ANALYSIS FOR NONLINEAR SCHRDINGER EQUATION WITH WAVE OPERATOR[J].Transactions of Nanjing University of Aeronautics and Astronautics,2006,23(2):87-93. 被引量:2
  • 2常谦顺.一类非线性Schrodinger方程的守恒差分格式[J].科学通报,1981,18:1094-1097.
  • 3郭柏灵 梁华湘.具波动算子的一类非线性Schrodinger方程组的数值计算问题[J].数值计算与计算机应用,1983,4(3):176-182.
  • 4GUO B L, LIANG H X. On the problem of numerical calculation for a class of the system of nonlinear Schrbdinger equations with wave operator [J]. Journal on Numerical Methods and Computer Applications, 1983(4): 258-263.
  • 5ZHANG F, PER]Z-GGARCIA V M, V-ZQUEZ L. Numerical simulation of nonlinear SchrSdinger equation system: A new conservative scheme [J]. Applied Mathematics and Computation, 1995, 71: 165-177.
  • 6CHANG Q S, JIA E, SUN W. Difference schemes for solving the generalized nonlinear Schrbdinger equation [J]. Journal of Computational Physics, 1999, 148(2): 397-415.
  • 7ZHANG L M, CHANG Q S. A new difference method for regularized tong-wave equation [J]. Journal on Numerical Methods and Computer Applications, 2000(4): 247-254.
  • 8ZHANG F, VZQUEZ L. Two energy conserving numerical schemes for the Sine-Gordon equation [J]. Applied Mathematics and Computation, 1991, 45(1): 17-30.
  • 9WONG Y S, CHANG Q S, GONG L. An initial-boundary value problem of a nonlinear Klein-Gordon equation [J]. Applied Mathematics and Computation, 1997, 84(1): 77-93.
  • 10CHANG Q S, JIANG H. A conservative difference scheme for the Zakharov equation [J]. Journal of Computa- tional Physics, 1994, 113(2): 309-319.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部