期刊文献+

基于拉格朗日松弛的产能共享讨价还价研究

Production capacity sharing bargaining based on Lagrangian relaxation
在线阅读 下载PDF
导出
摘要 以制造业产能共享为背景,考虑自利的产能提供方与需求方诉求不一致和市场关系不对等因素,采用Nash讨价还价理论研究共享产能分配策略。为此,首先将传统调度模型与非对称Nash讨价还价模型相结合,构建出本质为非线性整数规划的产能共享模型。继而,设计了基于拉格朗日松弛的求解算法,给出了产能共享的讨价还价分配结果。仿真分析表明,本文方法在大部分情况下能够获得理想的讨价还价结果。当产能提供方目标为min-sum型,其关注所有客户的自利且异质的时效要求,其与客户方的冲突尤其显著;随着其讨价还价能力的增强,其改善是以牺牲客户时效要求为代价的。然而当其讨价还价能力再继续增加,反而导致系统整体效益的波动。因此,博弈各方需要保持合理的讨价还价强度。 The production capacity sharing problem was studied in this paper.Considering that the game is composed of a capacity provider and customers,in which the capacity provider and customers are self-interest,with different demands and different market relations.Nash bargaining theory was adopted to explore the sharing strategy of the production capacity.To be specific,the classic scheduling model and the asymmetric Nash bargaining model were combined to develop a production capacity sharing model,which was essentially a nonlinear integer program.To address the computational issue,a solving method based on Lagrangian relaxation was designed,and then,the bargaining results of production capacity sharing were given.Simulation analysis shows that the proposed algorithm performs well in most cases.It is found that when the capacity provider has a min-sum objective function,the capacity provider pays attention to the performance indicators of all customers,and the conflict between the capacity provider and customers are particularly significant.With the increase of bargaining power of the capacity provider,the capacity provider index is optimized,but the customer performance index becomes worse.However,when the bargaining power of the capacity provider is very strong,it will lead to the fluctuation of the overall efficiency of the system.Therefore,the game parties need to maintain a reasonable bargaining power.
作者 吴琼 王长军 Qiiong WU;Changjun WANG(School of Economics and Management,Chuzhou University,Chuzhou 239000,Anhui,China;Glorious Sun School of Business and Management,Donghua University,Shanghai 200051,China)
出处 《运筹学学报(中英文)》 CSCD 北大核心 2024年第2期93-102,共10页 Operations Research Transactions
基金 国家自然科学基金重点项目(No.71832001) 上海市自然科学基金面上项目(No.20ZR14-01900) 上海市社科规划一般课题(No.2019BGL036) 安徽省社会科学创新发展研究攻关课题(No.2020CX058) 滁州学院应用经济学重点学科研究课题(No.2021yyjjx07)。
关键词 产能共享 单机调度 非对称Nash讨价还价 拉格朗日松弛 production capacity sharing single machine scheduling asymmetric Nash bargaining Lagrangian relaxation
  • 相关文献

参考文献7

二级参考文献110

  • 1张雪江,朱向阳,钟秉林,黄仁.基于模拟退火算法的知识获取方法的研究[J].控制与决策,1997,12(4):327-331. 被引量:8
  • 2W H M Raaymakers, J A Hoogeveen. Scheduling multi-purpose batch process industries with no-wait restrictions by simulated annealing. European Journal of Operational Research, 2000, 126(1): 131~151
  • 3L A Zadeh. Fuzzy sets. Information and Control, 1965, 8(3): 338-353
  • 4S Chang, Y Yih. A fuzzy rule-based approach for dynamic control of Kanbans in a generic Kanban system. International Journal of Production Research, 1998, 36(8): 2247~2257
  • 5T Chang, Y Yih. Constructing a fuzzy rule system from examples. Journal of Integrated Computer-Aided Engineering, 1999, 6(2): 213~221
  • 6K Tsutomu, I Hiroaki. An open shop scheduling problem with fuzzy allowable time and fuzzy resource constraint. Fuzzy Sets and Systems, 2000, 109(1): 141~147
  • 7J H Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, 2nd edition. Cambridge, MA: MIT Press, 1992
  • 8S Starkweather, D Whitley, K Mathias et al. Sequence scheduling with genetic algorithms. In: G Fandel, T Gulledge, A Jones eds. Proc of the 1st Joint US/German Conf on New Directions for OR in Manufacturing. New York: Springer Verlag, 1992. 130~148
  • 9S Amancio, D Antonio. Global optimization of energy and production in process industries: A genetic algorithm application. Control Engineering Practice, 1999, 7(4): 549~554
  • 10C L Liu, J W Layland. Scheduling algorithm for multi-programming in a hard-real-time environment. Journal of the ACM, 1973, 20(1): 46~61

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部