摘要
为进一步提高超短期光伏发电功率预测的精度,提出一种基于强化学习的多模型融合光伏发电功率预测方法。首先,采用局部离群因子算法检测、剔除异常点,并用多层感知机回归算法进行修补,解决数据异常问题;然后,将数据分为训练集、验证集与测试集,在训练集中训练支持向量机回归(SVR)、多元线性回归(MLR)、贝叶斯岭回归(BRR)、卷积-长短期记忆(CNN-LSTM)与基于粒子群算法优化的门控循环单元(PSO-GRU)模型,并在验证集对训练得到的模型进行验证,分别选出最佳的模型作为子模型;最后,在测试集中使用5个子模型进行预测,并将各预测结果用强化学习的方法进行融合,将融合值作为最终的预测结果。实验结果表明,该预测方法的平均绝对误差、均方误差、均方根误差与相对误差相比单模型方法以及其他传统的融合方法均有显著降低,验证了该方法的有效性。
In order to further improve the accuracy of ultra-short-term photovoltaic power prediction,a multi-model fusion photovoltaic power prediction method based on reinforcement learning is proposed.Firstly,the local outlier factor(LOF)algorithm is used to detect and remove outliers,and a multilayer perceptron regression algorithm is employed to correct the data anomalies.Then,the data is divided into training,validation,and testing sets.In the training set,models such as support vector Regression(SVR),multiple linear regression(MLR),Bayesian ridge regression(BRR),convolutional neural network-long short term memory(CNN-LSTM)and particle swarm optimization-gated recurrent unit(PSO-GRU)are trained.These trained models are validated on the validation set to select the best-performing models as sub-models.Finally,in the testing set,the five sub-models are used for forecasting,and their predictions are fused using a reinforcement learning method.The fusion value is taken as the final prediction result.Experimental results show that the proposed method significantly reduces the mean absolute error,mean squared error,root mean squared error,and relative error compared to single-model methods and other traditional fusion methods,verifying the effectiveness of this approach.
作者
王剑斌
傅金波
陈博
Wang Jianbin;Fu Jinbo;Chen Bo(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310007,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2024年第6期382-388,共7页
Acta Energiae Solaris Sinica
基金
浙江省自然科学基金(LR20F030004)。
关键词
异常检测
机器学习
强化学习
多模型融合
光伏发电功率预测
anomaly detection
machine learning
reinforcement learning
multi-model fusion
photovoltaic power prediction