期刊文献+

基于案例挖掘的农村自建房安全风险致因分析 被引量:1

Analysis of the Causes of Safety Risks of Rural Self-built Houses Based on Case Mining
在线阅读 下载PDF
导出
摘要 为深入分析农村自建房安全风险,探究影响农村自建房安全事故的关键致因,收集2014—2022年间的典型农村自建房建筑安全事故调查报告共86份。利用文本挖掘技术对事故调查报告进行分析,通过数据驱动的方式提取了36个影响农村自建房安全生产的风险因素。利用Apriori算法挖掘风险因素间的强关联关系,并在此基础上建立贝叶斯网络模型。通过贝叶斯网络推理及敏感性分析,明确了农村自建房安全事故的关键致因、敏感因素及最大概率致因链。该方法克服了专家主观意愿的影响,采用客观数据对农村自建房安全事故进行深入分析,为建立健全农村自建房安全风险长效管理机制提供参考。 In order to gain a comprehensive understanding of the safety risks associated with rural self-built houses and identify the key causal factors influencing rural self-built house safety accidents,a total of 86 typical rural self-built house construction safety accident investigation reports were collected between 2014 and 2022.Text mining technology was employed to analyze the accident investigation report,resulting in the extraction of 36 risk factors affecting the safety production of self-built houses in rural areas in a data-driven manner.The Apriori algorithm was employed to identify the significant correlation between risk factors,and a Bayesian network model was constructed on this foundation.Through critical link analysis and sensitivity analysis,the primary causes,sensitive factors,and the most probable cause chain of rural self-built house safety accidents were elucidated.The method overcomes the influence of subjective will on the part of experts by using objective data to analyze rural self-built house safety accidents in depth.It thereby provides a reference for the establishment of a sound long-term management mechanism for rural self-built house safety risks.
作者 申建红 王思冉 张茜 孟子祥 SHEN Jianhong;WANG Siran;ZHANG Qian;MENG Zixiang(College of Management Engineering,Qingdao University of Technology,Qingdao 266520,China;Research Institute of Construction Credit and Risk Management,Qingdao University of Technology,Qingdao 266520,China)
出处 《工程管理学报》 2024年第3期71-75,共5页 Journal of Engineering Management
基金 国家自然科学基金青年科学基金项目(72304161)。
关键词 农村自建房 安全风险 文本挖掘 APRIORI算法 贝叶斯网络 rural self-built houses security risk text mining Apriori algorithm bayesian network
  • 相关文献

参考文献5

二级参考文献78

  • 1陈全,李馨玉.基于复杂网络的化工事故致因分析[J].现代化工,2020,40(S01):12-15. 被引量:6
  • 2王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 3陈晓云,李荣陆,胡运发.基于最小词频阈值的文档特征选择[J].模式识别与人工智能,2006,19(4):531-537. 被引量:7
  • 4FAYYAD U, PIATETSKY-SHAPIRO G, SMYTH P. Knowledge dis- covery and data mining: towards a unifying framework [ C ]//Proc of the 2nd lntenlational Conference on Knowledge Discovery & Data Mining. 1996:82-88.
  • 5PEARL J. Fusion, propagation, and structuring in belief networks [ J ]. Artificial intelligence, 1986,29 ( 3 ) :241 - 288.
  • 6LAURITZEN S L, SPIEGELHALTER D J. Local computations with probabilities on graphical struetures and their application to expert systems [ J ]. Journal of the Royal Statistical Society Series B, 1988,50( 1570 ) : 157-224.
  • 7BROOM B M, DO K A, SUBRAMANIAN D. Model averaging strate- gies for structure learning in Bayesian networks with limited data[ J ]. BMC Bioinformatics,2012,13( S13 ) :10.
  • 8HUANG Shuai, LI Jing, YE Jie-ping, et al. A sparse structure learn- ing algorithm for Ganssian Bayesian network identification from high- dimensional data[ J]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence,2013,35 (6) : 1328-1342.
  • 9CHICKERING D M, GEIGER D, HECKERMAN D. Learning Baye- sian networks is NP-hard, Technical Report MSR-TR- 94- 17 [ R ]. 1994.
  • 10ROBINSON R W. Counting unlabeled acyclic digraphs[ C]//Combi- natorial Mathematics V. Berlin:Springer, 1977:28-43.

共引文献123

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部