期刊文献+

基于双阶段注意力机制循环神经网络的交通流预测

Traffic Flow Prediction Based on Two-Stage Attention Mechanism Recurrent Neural Network
在线阅读 下载PDF
导出
摘要 随着深度学习的发展,交通流预测的准确率越发提高,对时间序列的交通流预测进行研究,基于一种双阶段注意力机制循环神经网络模型(DA-RNN),以解决当前在交通流量的时间序列预测中存在的难以捕捉时间数据序列之间的相关性导致预测不够准确的问题,并解决实验中存在的过拟合现象。论文基于PEMS04数据进行实验并将预测结果与LSTM、GRU模型的预测结果进行对比,表明该时序预测模型具有良好的性能,可为交通管理与控制提供有效依据。 With the development of deep learning,the accuracy of traffic flow forecasting is increasing.This article starts from the perspective of time series forecasting traffic flow,and is based on a two-stage attention mechanism recurrent neural network model(DA-RNN)to solve the current traffic flow.It is difficult to capture the correlation between time data series in the time series forecasting of traffic,which leads to the problem of inaccurate prediction and solves the problem of overfitting in the experiment.This paper conducts experiments based on PEMS04 data and compares the prediction results with the prediction results of LSTM and GRU models.It shows that this time series prediction model has good performance and can provide an effective basis for traffic management and control.
作者 王健 王峥 WANG Jian;WANG Zheng(Wuhan Research Institute of Posts and Telecommunications,Wuhan 430074;Nanjing Fenghuo Tiandi Communication Technology Co.,Ltd.,Nanjing 210019)
出处 《计算机与数字工程》 2024年第4期1251-1256,共6页 Computer & Digital Engineering
关键词 深度学习 循环神经网络 注意力机制 编码器-解码器 deep learning recurrent neural network attention mechanism encoder-decoder
  • 相关文献

参考文献9

二级参考文献57

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部