摘要
针对线性抛物型积分微分方程,首先利用带界面修正的直接间断有限元(DDGIC)法对空间离散,分析半离散格式的稳定性;然后在时间方向应用Crank-Nicolson法,建立全离散的Crank-Nicolson/DDGIC格式,对全离散格式的收敛性进行了详细讨论;最后给出数值算例验证方法的有效性和理论结果.
In this paper,DDCIC(Direct discontinuous Galerkin finite element method with interface correction)is applied to numerical solving the linear parabolic integro-differential equation,and the stability of semi-discrete scheme is discussed.Then with Crank-Nicolson discretion adopted in time direction,the fully discrete scheme is got,and the convergence is analyzed in detail.The numerical examples are given to verify the validity and the theoretical results.
作者
谌超凡
郑云英
卜斌
Chen Chaofan;Zheng Yunying;Bu Bing(Huaibei Normal University)
出处
《哈尔滨师范大学自然科学学报》
CAS
2024年第1期21-29,共9页
Natural Science Journal of Harbin Normal University
基金
安徽省自然科学基金(2008085MA11)
安徽省高校自然科学基金(KJ2018A0385)。
关键词
抛物型积分微分方程
界面修正的直接间断有限元法
Crank-Nicolson法
Linear parabolic integro-differential equations
Direct discontinuous Galerkin finite element method with interface correction
Crank-Nicolson$method