摘要
采用数值方法研究了由气动杆、逆向喷流和侧向喷流构成的组合模型的高超声速减阻机理,该方法基于有限体积法,且采用了AUSM+空间离散格式和Menter's SST k-ω湍流模型。结果表明:气动杆对流场进行了有利控制,削弱了原始激波,逆向喷流增强了气动杆前方弓形激波的强度,实现了高超声速来流的首次减速,而侧向喷流形成的桶状激波实现了气流的二次减速,三者的联合作用减弱了钝头体的再附激波,实现了高超声速钝头体的减阻。此外,增加气动杆长度和两个喷流总压均可提高系统减阻性能,但阻力系数降低的速率逐渐减小。
The hypersonic drag reduction mechanism of the combined model consisting of the spike,opposing jet and lateral jet is studied by numerical method.The numerical method is based on the finite volume method,the AUSM+spatial discrete scheme and Menter's SST k-ωturbulent model are adopted.The results show that the spike has a favorable control over the flow field and weakens the original shock wave.The opposing jet enhances the bow shock wave in front of the spike to realize the first deceleration of the hypersonic flow.The barrel shock wave formed by the lateral jet realizes the secondary deceleration of the hypersonic flow.The combined effect of the above three factors weakens the reattachment shock wave of the blunt body and achieves the drag reduction of the hypersonic blunt body.In addition,the drag reduction performance of the system can be improved by increasing the length of the spike and total pressure of the two jets,but the reduction rate of the drag coefficient decreases gradually.
作者
刘佳
常斌
黄杰
姚卫星
Liu Jia;Chang Bin;Huang Jie;Yao Weixing(High Performance Computing Center,Nanjing University of Aeronautics and Astronautics,Jiangsu Nanjing,210016,China;State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Jiangsu Nanjing,210016,China;Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics and Astronautics,Jiangsu Nanjing,210016,China)
出处
《机械设计与制造工程》
2024年第7期65-69,共5页
Machine Design and Manufacturing Engineering
基金
中央高校基本科研业务费资助(NJ2022008)
江苏高校优势学科建设工程资助项目。