摘要
针对石英微机电系统(MEMS)陀螺检测电极输出感应电压较低问题,通过优化检测电极分布参数,提升其机械灵敏度。首先,分析检测电极分布参数对陀螺输出感应电荷的影响,确定优化方案的控制参数和目标函数。其次,基于有限元方法(FEM)构建三种石英MEMS陀螺的机电耦合模型。最后,使用内尔德-米德(NM)算法优化检测电极分布参数。实验结果表明,优化后的检测电极分布参数更加合理,石英MEMS陀螺的机械灵敏度在传统的双端式和梳齿式音叉结构上分别提升了3.06和1.53倍,在基于剪应力检测的结构上提升了39.37倍,验证了优化检测电极分布参数可以提升石英MEMS陀螺机械灵敏度。
Aiming at the low induced voltage output from detection electrodes in quartz MEMS gyroscopes,the mechanical sensitivity is improved by optimizing the distribution parameters of the sensing electrodes.Firstly,the influence of sensing electrode distribution parameters on the induced charge of gyroscope is analyzed,and the control parameters and objective function of the optimization scheme are determined.Secondly,electromechanical coupling models of three kinds of quartz MEMS gyroscope based on finite element method(FEM)are constructed.Finally,the distribution parameters of sensing electrodes are optimized by the Nelder-Mead(NM)algorithm.The experimental results indicate that the optimized distribution of detection electrodes is more reasonable.Specifically,the mechanical sensitivity on the traditional double-ended and comb tuning fork structures has been improved by 3.06 and 1.53 times,respectively,and the structure based on shear stress detection is increased by 39.37 times,which demonstrates the feasibility of enhancing the performance of quartz MEMS gyroscopes through the optimization of sensing electrode distribution parameters,providing a technical reference for similar research in the field.
作者
李雪峰
甘罗
周琦
LI Xuefeng;GAN Luo;ZHOU Qi(College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China;Educational Technology and Computing Center,Tongji University,Shanghai 200092,China;Shanghai Research Institute for Intelligent Autonomous Systems,Tongji University,Shanghai 201210,China)
出处
《中国惯性技术学报》
EI
CSCD
北大核心
2024年第6期592-597,共6页
Journal of Chinese Inertial Technology
基金
上海市级科技重大专项(2021SHZDZX0100)
上海市科学技术委员会科研计划项目(19511132101)。
关键词
石英MEMS陀螺
检测电极优化
有限元方法
内尔德-米德算法
机械灵敏度
quartz MEMS gyroscope
sensing electrode optimization
finite element method
Nelder-Mead algorithm
mechanical sensitivity