摘要
X-ray photoelectron spectroscopy(XPS)is an important characterization tool in the pursuit of controllable fluorination of two-dimensional hexagonal boron nitride(h-BN).However,there is a lack of clear spectral interpretation,and seemingly conflicting measurements exist.To discern the structure−spectroscopy relation,we performed a comprehensive first-principles study on the boron 1s edge XPS of fluorinated h-BN(F-BN)nanosheets.By gradually introducing 1−6 fluorine atoms into different boron or nitrogen sites,we created various F-BN structures with doping ratios ranging from 1 to 6%.Our calculations reveal that fluorines landed at boron or nitrogen sites exert competitive effects on the B 1s binding energies(BEs),leading to red or blue shifts in different measurements.Our calculations affirmed the hypothesis that fluorination affects 1s BEs of all borons in theπ-conjugated system,opposing the transferability from h-BN to F-BN.Additionally,we observe that BE generally increases with higher fluorine concentration when both borons and nitrogens are nonexclusively fluorinated.These findings provide critical insights into how fluorination affects boron’s 1s BEs,contributing to a better understanding of fluorination functionalization processes in h-BN and its potential applications in materials science.
基金
support from the National Natural Science Foundation of China(Grant No.12274229)is greatly acknowledged.