期刊文献+

基于深度学习算法的恶意攻击检测系统设计与实现

Design and implementation of malicious attack detection system based on deep learning algorithm
在线阅读 下载PDF
导出
摘要 为有效提高电网软件恶意攻击的检测效率,使用自动编码器进行异常恶意攻击检测的无监督深度学习方法,同时采用低采样和高采样的混合采样策略来平衡数据集,并对深度学习算法的检测性能及数据丢包率进行分析。实验结果表明,基于深度学习算法在检测电网运营平台恶意攻击时,准确率高达98.84%,真正例率和耗时均比较低(2.1%、11.28 ms),且深度学习算法的召回率高达99.2%;进一步表明基于深度学习所建立的自动编码器可以有效检测到电网运营平台恶意攻击,且检测综合性能优于支持向量机等其他机器学习算法。丢包率随着样本数的增加而降低,当样本数增加到40000个时,丢包率最小约为3%。 In order to effectively improve the detection efficiency of malicious attacks on power grid software,an unsupervised deep learning method for abnormal malicious attack detection using autoencoder was used,and a mixed sampling strategy of low sampling and high sampling was used to balance the data set,and the detection performance and data packet loss rate of the deep learning algorithm were analyzed.The experimental results showed that when detecting malicious attacks on power grid operation platforms based on deep learning algorithms,the accuracy rate was as high as 98.84%,the true case rate and time consumption were relatively low(2.1%,11.28 ms),and the recall rate of deep learning algorithms was as high as 99.2%.This further indicates that the automatic encoder established based on deep learning can effectively detect malicious attacks on power grid operation platforms,and the overall detection performance is superior to other machine learning algorithms such as support vector ma‐chines.The packet loss rate decreased as the number of samples increases.When the sample size increased to 40000,the minimum packet loss rate was about 3%.
作者 李强 张兴富 桂胜 胡博 LI Qiang;ZHANG Xingfu;GUI Sheng;HU Bo(State Grid Information Communications Industry Group Co.,Ltd.,Beijing 102200,China;Beijing CLP Puhua Information Technology Co.,Ltd.,Beijing 100089,China)
出处 《粘接》 CAS 2024年第7期140-143,共4页 Adhesion
关键词 深度学习 自动编码器 电网软件运营平台 恶意攻击 deep learning automatic encoder power grid software operation platform malicious attacks
  • 相关文献

参考文献18

二级参考文献147

  • 1胡健,苏永东,李超,杨本富.基于机器学习的入侵检测系统探究[J].信息通信,2019,0(11):163-164. 被引量:2
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:192
  • 3肖晖,张玉清.Nessus插件开发及实例[J].计算机工程,2007,33(2):241-243. 被引量:9
  • 4肖立中,邵志清,钱夕元.一种用于网络入侵检测的杂交聚类算法研究[J].计算机工程,2007,33(4):125-127. 被引量:10
  • 5Zhang Y, Fang Y. ARSA: An attack-resilient security architec- ture for multihop wireless mesh networks[J]. IEEE J. Select. Areas Communications, 2006,24(10) : 1916-1928.
  • 6Wang X,Wong J, Zhang W. A heterogeneity aware framework for group key management in wireless mesh networks[C]//Se- cureComm' 08. Istanbul, Turkey, September 2008.
  • 7Prathapani A, Santhanam L, Agrawal D P, et al. Intelligent honey- pot agent for blackhole attack detection in Wireless Mesh Net- works[C]//IEEE 6th International Conference on Mobile Ad- hoc and Sensor Systems. 2009:753-758.
  • 8Ming Y, Zhou M C, Su W. A Secure Routing Protocol Against Byzantine Attacks for MANETs in Adversarial Environments [J]. IEEE Transactions on Vehicular Technology, 2009,58( 1): 449-460.
  • 9Yah Y, Cao J N, Li Z. Stochastic Security Performance of Active Cache Based Defense against DoS Attacks in Wireless Mesh Network[,C] // Second International Conference on Advances in Mesh Networks. 2009 : 30- 36.
  • 10Bose S, Bharathimurugan S, Kannan A. Multi-Layer Integrated Anomaly Intrusion Detection System for Mobile Adhoc Net- works[C]//IEEE-ICASCN 2007. MIT Campus, Anna University, Chennai, India, Feb. 2007 : 360-365.

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部