期刊文献+

A Novel ISSA–DELM Model for Predicting Rock Mass Permeability

在线阅读 下载PDF
导出
摘要 In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and previous studies aimed to establish an accurate relationship between K and geological parameters.This study uses the improved sparrow search algorithm(ISSA)to optimize the parameter settings of the deep extreme learning machine(DELM),constructing a prediction model with flexible parameter selection and high accuracy.First,the Spearman method is applied to analyze the correlation between geological parameters.A sample database is built by comprehensively selecting four geological indexes:burial depth,rock quality designation(RQD),fracture density characteristic index(FD),and rock mass integrity designation(RID).Hence,the defects of the sparrow search algorithm(SSA)are enhanced using the improved strategy,and the initial input weights of the DELM are optimized.Finally,the proposed ISSA–DELM model is employed to predict the permeability coefficient of rock mass in the entire study area.The results showed that the predictive performance of the model is superior to that of the DELM and SSA–DELM.Therefore,this model successfully provides insights into the distribution characteristics of rock mass permeability at engineering sites.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2825-2848,共24页 工程与科学中的计算机建模(英文)
  • 相关文献

参考文献5

二级参考文献76

  • 1Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323: 533-536.
  • 2Hagan M T, Menhaj M B. Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw, 1994, 5:989-993.
  • 3Wilamowski B M, Yu H. Neural network learning without backpropagation. IEEE Trans Neural Netw, 2010, 21: 1793-1803.
  • 4Chen S, Cowan C, Grant P. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw, 1991, 2:302-309.
  • 5Li K, Peng J X, Irwin G W. A fast nonlinear model identification method. IEEE Trans Automat Contr, 2005, 50: 1211-1216.
  • 6Hornik K. Approximation capabilities of multilayer feedforward networks. Neural netw, 1991, 4:251 257.
  • 7Hassoun M H. Fundamentals of Artificial Neural Networks. MIT Press, 1995. 35-55.
  • 8Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signal Syst, 1989, 2:303-314.
  • 9White H. Artificial Neural Networks: Approximation and Learning Theory. Blackwell Publishers, Inc., 1992. 30-100.
  • 10Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of IEEE International Joint Conference on Neural Networks, Budapest, 2004. 985-990.

共引文献273

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部