期刊文献+

基于改进粒子群优化算法的PID温度串级控制 被引量:1

PID Temperature Cascade Control Based on Improved Particle Swarm Optimization Algorithm
在线阅读 下载PDF
导出
摘要 针对电站锅炉主蒸汽温度控制系统中存在的易超调、滞后性、抗干扰性差、非线性等问题,提出一种改进粒子群优化算法(Improved Particle Swarm Optimization,IPSO)的PID串级控制方法,该算法先采用线性递减惯性权重的IPSO算法,避免陷入局部极值点,并能有效提升全局搜索能力,再利用改进算法优化PID控制器的参数。通过MATLAB仿真结果表明,相较于普通PID算法,该控制方法在超调量、调节时间、抗干扰能力等方面具有明显优势,系统的响应速度明显提升,鲁棒性好,对复杂温度系统具有较好的适应性。 In order to solve the problems of easy overshoot,hysteresis,poor anti-interference and nonlinearity in the main steam temperature control system of power station boiler,a PID cascade control method with improved particle swarm optimization(IPSO) algorithm is proposed,which first adopted the IPSO algorithm with linear decreasing inertia weight to avoid falling into local extreme points,and could effectively improve the global search ability,and then the improved algorithm is used to optimize the parameters of the PID controller.The simulation results of MATLAB show that compared with the ordinary PID algorithm,the control method has obvious advantages in overshoot,adjustment time,anti-interference ability,etc.,and the response speed of the system is significantly improved,the robustness is good,and it has good adaptability to complex temperature systems.
作者 杨尚梅 杜雪 邓叶 Yang Shangmei;Du Xue;Deng Ye(Lanzhou Institute of Technology,Lanzhou 730010,China;China Energy Engineering Group Gansu Electric Power Design Institute Co.,Ltd.,Lanzhou 730010,China)
出处 《机电工程技术》 2024年第7期177-180,共4页 Mechanical & Electrical Engineering Technology
关键词 粒子群算法 串级控制 线性递减惯性权重 抗干扰 particle swarm optimization cascade control linear decreasing inertia weight anti-interference
  • 相关文献

参考文献12

二级参考文献117

共引文献192

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部