期刊文献+

基于GWO-DBSCAN算法的电商用户价值分类模型设计与实现

在线阅读 下载PDF
导出
摘要 基于对电商平台用户画像中用户价值标签的现状了解,分析了以往电商平台常用的K-means聚类方法的不足之处,并在此基础上选取多个聚类方法进行横向对比,确定了GWO-DBSCAN聚类方法来处理电商用户行为数据。采用基于密度划分的DBSCAN聚类算法,针对DBSCAN算法聚类效果受扫描半径eps和最小包含点minpts影响较大的问题,利用灰狼优化算法的全局寻优特性对最佳扫描半径eps和最小包含点minpts求解,实现对电商用户群体更合理的聚类。通过实践检验发现,采取GWO-DBSCAN算法聚类的结果与使用其他聚类方法得到的结果相比,在用户分类的合理性方面有较明显的提升。
作者 赵煜 卢胜男 ZHAO Yu;LU Shengnan
机构地区 西安石油大学
出处 《信息技术与信息化》 2024年第7期68-71,共4页 Information Technology and Informatization
  • 相关文献

参考文献7

二级参考文献63

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部