期刊文献+

基于粒子群-细菌觅食混合优化算法的汽车碳纤维复合材料地板铺层设计

Ply Design of Automotive Carbon Fiber Composite Floor Based on PSO-BFO Algorithm
在线阅读 下载PDF
导出
摘要 为提高白车身地板复合材料铺层优化设计的精度、效率及结构轻量化水平,提出了一种碳纤维复合材料地板铺层优化设计方法。首先建立了白车身有限元模型并验证了其有效性,然后通过力学性能测试获取了碳纤维复合材料的参数,并进行了地板铺层的概念设计和建模。接着,采用连续变量优化设计方法确定了地板的铺层厚度、铺块形状和铺层层数,并使用离散化圆整策略获得了各铺向角的离散铺层层数。优化结果表明,所提出的粒子群-细菌觅食混合优化(PSO-BFO)算法对地板质量、静态弯曲刚度和白车身轻量化系数的改善率分别为34.4%、6.0%和5.3%。 A method for optimizing the layout of carbon fiber composite floorings for BIW was proposed to enhance precision,efficiency,and structural lightweight.Initially,BIW finite element model was established and its efficiency was validated.Subsequently,material parameters for the carbon fiber composite were obtained through mechanical performance testing,followed by conceptual designing and modeling of the flooring layout.Subsequent utilization of continuous variable optimization determined the thickness,block shapes,and layers of the flooring,employing a discretization and rounding strategy to achieve discrete layer numbers for each layup angle.The optimization results show that the Particle Swarm Optimization-Bacteria Foraging Optimization(PSO-BFO)algorithm proposed herein improves flooring quality,static bending stiffness and BIW lightweight coefficient by 34.4%,6.0%and 5.3%,respectively.
作者 杨海洋 丁娟 蔡珂芳 王军年 胡爱成 Yang Haiyang;Ding Juan;Cai Kefang;Wang Junnian;Hu Aicheng(Jiaxing Nanhu University,Jiaxing 314001;Jiaxing Key Laboratory of Intelligent Computation and Data Science,Jiaxing 314001;State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022;Z-One Technology Co.,Ltd.,Shanghai 201800;Daimler Greater China Ltd.Shanghai Branch,Shanghai 200080)
出处 《汽车技术》 CSCD 北大核心 2024年第8期53-62,共10页 Automobile Technology
基金 国家自然科学基金面上项目(51975244) 吉林省自然科学基金项目(20220101200JC) 吉林省中青年科技创新创业卓越人才(团队)项目(20230508050RC) 2023嘉兴市重点研发计划项目(2023BZ10002) 2024年嘉兴市公益性研究计划项目(2024AY10033)。
关键词 复合材料地板 铺层设计方法 粒子群-细菌觅食混合优化方法 多目标优化 Composite floor Composite ply design method Particle Swarm Optimization-Bacteria Foraging Optimization(PSO-BFO)algorithm Multi-objective optimization
  • 相关文献

参考文献8

二级参考文献142

共引文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部