期刊文献+

基于机器学习的气藏相对渗透率曲线确定方法

Determine relative permeability curves for gas reservoirs based on machine learning
在线阅读 下载PDF
导出
摘要 相对渗透率曲线是研究多相渗流的基础,在计算气井产量、分析气井产水规律等方面具有重要意义。由于常规的相对渗透率曲线一般通过岩心实验获取,耗时较长,成本高。为此,结合经验公式、油气藏数值模拟与机器学习的方法,提出一种采用生产动态数据计算气水相对渗透率曲线的方法。以四川盆地某气藏的一研究区块为例,通过气藏数值模拟计算的产气量、产水量、地层压力组成的样本集作为模型的输入,Brooks-Corey模型的参数作为模型输出,对比SCG、BR、LM神经网络学习算法,优选LM算法建立训练模型,进一步讨论了样本集的大小对预测结果的影响,并提出了相应的优化策略。研究结果表明:(1)由于不同的隐含层设置对神经网络的训练效果不同,当训练算法为LM、网络隐含层数为2层、节点数分别为41、32时对相渗曲线预测效果最好;(2)样本数的大小对网络训练速度和模型预测效果有重要影响,适当减少样本数可以改善模型预测效果,但同时也会增加网络训练误差;减少输入变量时间段,会增加网络训练误差,降低预测模型最终预测效果。实际应用表明,预测相渗曲线与岩心相渗曲线之间差异较小,并且产水量与压力拟合精度较高,因此该方法可以快速、准确地计算气水相对渗透率曲线,为气田开发生产提供有力的支持和指导。 Relative permeability curve is fundamental for investigating multiphase seepage,and it is of great significance in calculat-ing the gas well production and analyzing the water-producing law.Conventional relative permeability curves are generally obtained through core experiments,which are time-consuming and costly.Therefore,this paper proposes a method for calculating gas-water relative permeability curves using production performance data,based on integrating empirical formula,reservoir numerical simu-lation,and machine learning.Taking a study block of a gas reservoir in the Sichuan Basin as an example,a sample set consisting of gas production,water production and formation pressure calculated by numerical simulation was utilized as the model input and the parameters of the Brooks-Corey model as the output.By comparing the learning algorithms of the Scaled Conjugate Gradient(SCG),Bayesian Regularization(BR),and Levenberg-Marquardt(LM)neural networks,a training model was established by the selected LM algorithm.Furthermore,the influence of the size of the sample set on prediction results was discussed and the corresponding optimiza-tion strategy proposed.The following results are obtained.(i)Different hidden layer settings can cause different training effects on the neural network,the best prediction of relative permeability curve is achieved when the LM algorithm is adopted with 2 hidden layers which have 41 and 32 nodes respectively.(ii)The sample size has great influences on the network training speed and model prediction effect.Appropriate reduction of the samples can improve the model prediction effect,but will increase the network training error.Re-duction in the input variable time period will increase the network training error and reduce the final prediction effect of model.Prac-tical application demonstrates that the difference between the predicted relative permeability curves and the core relative permeability curves is small,while the fitting accuracy of water production and pressure is high.This method is proved to be efficient and accurate for calculating gas-water relative permeability curves,providing a strong support and guidance for the development of gas fields.
作者 周道勇 汪小平 张娜 李芙慧 莫海帅 ZHOU Daoyong;WANG Xiaoping;ZHANG Na;LI Fuhui;MO Haishuai(Chongqing Gas District,PetroChina Southwest Oil&Gasfield Company,Chongqing 400700,China;Petro-leum Engineering School,Southwest Petroleum University,Chengdu,Sichuan 610500,China)
出处 《天然气勘探与开发》 2024年第4期89-98,共10页 Natural Gas Exploration and Development
关键词 相对渗透率曲线 机器学习 人工神经网络 数值模拟 Brooks-Corey模型 Relative permeability curve Machine learning Artificial neural network Numerical simulation Brooks-Corey model
  • 相关文献

参考文献8

二级参考文献68

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部