期刊文献+

Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent

在线阅读 下载PDF
导出
摘要 We prove,under mild conditions,the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model,both in batch gradient descent and stochastic gradient descent.We also discuss a Riemannian version of the Adam algorithm.We show numerical simulations of these algorithms on various benchmarks.
出处 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1175-1188,共14页 应用数学与计算数学学报(英文)
基金 partially supported by NSF Grants DMS-1854434,DMS-1952644,and DMS-2151235 at UC Irvine supported by NSF Grants DMS-1924935,DMS-1952339,DMS-2110145,DMS-2152762,and DMS-2208361,and DOE Grants DE-SC0021142 and DE-SC0002722.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部