期刊文献+

修辞可控的中国古典诗歌生成

Rhetoric-Controllable Chinese Classical Poetry Generation
在线阅读 下载PDF
导出
摘要 中国古典诗歌是一种语言凝练、语义丰富的文学艺术,它的创作因素有许多方面,修辞手法是其中一个最显著的特征之一,诗人在进行创作时通常会使用修辞手法来增强诗歌的感染力和表现力。该文致力于构建具有修辞手法创作能力的诗歌生成模型,以此来提升生成诗歌的多样性、趣味性和新颖性,从而增加读者阅读过程中的审美体验。该文首先通过人工标注、词句特征提取、训练基于BERT的修辞分类器的方式构建一个修辞诗句数据库,然后将每首诗按照一定的方式序列化成一个长句子,并以此来训练语言模型得到诗歌生成模型。自动评测和人工评测结果表明,模型可以生成具有特定修辞手法的诗歌,且生成诗歌的质量相比基线有显著提升。 Chinese classical poetry is a kind of literary art with concise language and rich semantics.Its creation involve many aspects,among which rhetoric is one of the most noticeable features.Poets usually use rhetoric to enhance the poem's appeal and expressiveness.This paper aims to build a poetry generation model with the ability of rhetorical creation to improve the diversity,interest,and novelty of generated poems,thus increasing the aesthetic experience of readers in the reading process.To this end,a data set of rhetoric poems is firstly constructed by manual annotation,feature extraction,and a BERT-based rhetoric classifier.Then,each poem is serialized into a sequence,and the poetry generation model is trained as a language model on this sequence.The automatic and manual evaluation results show that the model can generate poems with specific rhetoric,and the quality of the generated poems is significantly improved compared to the baseline.
作者 杨媛婷 朱泓禹 马安香 刘玉豪 罗应峰 肖桐 YANG Yuanting;ZHU Hongyu;MA Anxiang;LIU Yuhao;LUO Yingfeng;XIAO Tong(College of Science,Northeastern University,Shenyang,Liaoning 110819,China;College of Computer Science and Engineering,Northeastern University,Shenyang,Liaoning 110819,China;College of Information Science and Engineering,Northeastern University,Shenyang,Liaoning 110819,China)
出处 《中文信息学报》 CSCD 北大核心 2024年第5期167-174,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(61876035,61732005)。
关键词 中国古典诗歌 诗歌生成 修辞可控 Chinese classical poetry poem generation rhetoric-controllable
  • 相关文献

参考文献3

二级参考文献35

  • 1李良炎,何中市,易勇.基于词联接的诗词风格评价技术[J].中文信息学报,2005,19(6):98-104. 被引量:7
  • 2苏劲松,周昌乐,李翼鸿.基于统计抽词和格律的全宋词切分语料库建立[J].中文信息学报,2007,21(2):52-57. 被引量:11
  • 3Long Jiang, Ming Zhou. Generating Chinese Couplets using a Statistical MT Approach[C]//The 22nd International Conference on Computational Linguistics, Manchester, England, August 2008.
  • 4Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical Phrase-Based Translation [C]//HLT/NAACL 2003.
  • 5Franz Josef Och. Minimum Error Rate Training for Statistical Machine Translation [C]//ACL 2003: Proc. of the 41st Annual Meeting of the Association for Computational Linguistics, Japan, Sapporo, July 2003.
  • 6Franz Josef Och, Hermann Ney. Discriminative Training and Maximum Entropy Models for Statistical Machine Translation [C]//ACL 2002: Proc. of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, July 2002: 295-302.
  • 7Charles O. Hartman. Virtual Muse.. Experiments in Computer Poetry[M]. Wesleyan University Press, 1996.
  • 8Naoko Tosa, Hideto Obara and Michihiko Minoh. Hitch Haiku: An Interactive Supporting System for Composing Haiku Poem[C]//ICEC 2008: 209-216.
  • 9H. Manurung, G. Ritchie and H. Thompson. Towards a computational model of poetry generation[C]//Proc, of the AISB-00 Symposium on Creative and Cultural Aspects of AI, 2001.
  • 10Franz Josef Och, Nicola Ueffing, Hermann Ney. An Efficient A Search Algorithm for Statistical Machine Translation [C]//Data-Driven Machine Translation Workshop, Toulouse, France, July 2001:55-62.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部