期刊文献+

曲线区段弓网接触力仿真研究

Study on Simulation of Contact Force between Pantograph-catenary in Curve Section
在线阅读 下载PDF
导出
摘要 为探究曲线区段弓网系统的动力学特性,利用有限元方法对曲线区段线路条件下弓网系统空间位置进行数学解析,建立弓网系统仿真模型,并对不同行车速度、曲线半径、接触网拉出值下的曲线区段弓网系统进行非线性瞬态分析。结果表明:曲线区段行车速度越高、曲线半径越小,弓网接触力波动越剧烈;接触网相邻定位点拉出值设置大小差异越大,弓网接触力的波动越大,弓网系统稳定性越差。 In order to explore the dynamic characteristics of the pantograph-catenary system in curve sections,the finite element method is used to mathematically analyze the spatial position of the pantograph-catenary system under curve section,establish a simulation model of the pantograph-catenary system,and conduct nonlinear transient analysis of the pantograph-catenary system in curve sections under different running speeds,curve radii,and stagger values of contact wire.The results show that the higher the running speed and the smaller the curve radius in the curved section,the more severe the fluctuation of the contact force between pantograph-catenary.The greater the difference in the stagger values of adjacent registration points of the overhead contact system,the greater the fluctuation of the contact force between the pantograph-catenary,and the poorer the stability of the pantograph-catenary system.
作者 郑睿卿 祁文哲 姜泰华 ZHENG Ruiqing;QI Wenzhe;JIANG Taihua
出处 《电气化铁道》 2024年第4期30-36,共7页 Electric Railway
关键词 弓网系统 接触力 曲线区段 仿真研究 pantograph-catenary system contact force curve section simulation study
  • 相关文献

参考文献10

二级参考文献83

  • 1李云飞.接触网在曲线区段接触线拉出值的确定[J].铁路技术创新,2010(1):74-75. 被引量:3
  • 2郭京波,杨绍普,高国生.高速机车主动控制受电弓研究[J].铁道学报,2004,26(4):41-45. 被引量:24
  • 3刘红娇,张卫华,梅桂明.基于状态空间法的受电弓主动控制的研究[J].中国铁道科学,2006,27(3):79-83. 被引量:17
  • 4吴天行.接触网的有限元计算与分析[J].铁道学报,1996,18(3):44-49. 被引量:29
  • 5WU T X, BRENNAN M J. Dynamic stiffness of a railway overhead wire system and its effect on pantograph-catenary system dynamics[J]. Journal of Sound and Vibration, 1999, 219(3): 483- 502.
  • 6ARNOLD M, SIMEON B. Pantograph and catenary dynamics: a benchmark problem and its numerical solution[J]. Applied Numerical Mathematics, 2000, 34(4): 345-362.
  • 7LOPEZ-GARCIA O, CAMICEROA, TORRESV. Computation of the initial equilibrium of railway overheads based on the catenary equation[J]. Engineering Structures, 2006, 28(10): 1387 -1394.
  • 8METRIKINE A V, BOSCH A L. Dynamic response of a two-level catenary to a moving load[J]. Journal of Sound and Vibration, 2006, 292(3/4/5): 676-693.
  • 9HABER R B, ABEL J F. Initial equilibrium solution methods for cable reinforced membranes: part ( I )-formulations[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 30(3), 263 -284.
  • 10WU T X, BRENNAN M J. Basic analytical study of pantographcatenary system dynamics[J].Vehicle System Dynarmics, 1998, 30(6): 443 456.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部