期刊文献+

基于神经网络的排水管道破损诱发地陷风险评价

Risk assessment on ground collapse induced by sewer breakage based on artificial neural network models
在线阅读 下载PDF
导出
摘要 城市地面塌陷威胁居民生命财产安全,为甄别地面塌陷影响因素、筛查风险区域、减少潜在损失,建立了地面塌陷风险评价方法。以衡阳市为例,收集整理了排水管网基础数据,采用人工神经网络算法预测管网破损尺寸,并通过逻辑回归算法预测管网管周地面塌陷风险发生率。结果表明:人工神经网络模型训练集预测值与真实值的平均方差为0.026,逻辑回归模型预测的地面塌陷风险与管道破损位置高度相关;衡阳市城西排水分区及酃湖排水分区地面塌陷发生率高,地面塌陷诱因包括管道破损、路面荷载、极端降雨、高速水流等。研究成果可为长江中游城市管网管周地面塌陷的防治工作提供科学依据。 Urban ground collapses pose significant threats to human life and property safety.To identify the influence indicators of ground collapse,find out risk areas,and reduce potential disaster losses,a ground collapse risk assessment method was established.Taking Hengyang City as an example,the basic data of the drainage network were collected.The artificial neural network(ANN)was used to predict the size of the sewer breakage,and the logistic regression algorithm was used to predict the occurrence rate of ground collapse around the sewer.The results show that the average variance between the ANN predicted values and the true values is 0.026,and the ground collapse risk is highly correlated with the sewer breakage according to the logistic regression algorithm.The Chengxi and Linhu drainage areas have the high risk of ground collapse,which might be caused by sewer breakage,surface loading,extreme rainfall,high-speed flow,etc.This study provides support for the prevention and control of ground collapse in urban areas of the middle reaches of the Changjiang River.
作者 唐洋博 黄标 李玮 管梦林 TANG Yangbo;HUANG Biao;LI Wei;GUAN Menglin(National Engineering Center of Eco-Environments in Yangtze River Economic Zone,Wuhan 430014,China;Yangtze Eco-Environment Engineering Research Center,China Three Gorges Corporation,Wuhan 430014,China;School of Civil and Environmental Engineering and Geography Science,Ningbo University,Ningbo 315211,China)
出处 《人民长江》 北大核心 2024年第8期133-138,共6页 Yangtze River
基金 国家重点研发计划项目(2022YFC30300) 中国长江三峡集团有限公司科研项目(NBWL202300013) 宁波大学浙江省-加拿大可持续城市排水联合实验室开放基金项目。
关键词 排水管道 管网破损 地面塌陷 人工神经网络 预防措施 城市排水系统 衡阳市 drainage sewer sewer breakage ground collapse artificial neural network prevention measures urban drainage system Hengyang City
  • 相关文献

参考文献7

二级参考文献61

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部