期刊文献+

一种基于点云配准的空间非合作目标相对位姿估计算法

A pose estimation algorithm for spatial non-cooperative targets based on point cloud registration
在线阅读 下载PDF
导出
摘要 针对空间机器人在轨维修等任务中的非合作目标位姿估计问题,提出一种基于点云配准的空间非合作目标位姿估计算法。在粗配准阶段,利用复合滤波算法保留点云外形并降低点云密度,通过主成分分析法求出特征向量,建立特征向量变换关系,利用RANSAC算法检验匹配效果。在精配准阶段,使用基于改进ICP算法的精配准算法,求出旋转矩阵和平移矩阵,得到位姿估计值。采用经旋转平移变换和高斯噪声处理的6组数字卫星点云模型进行点云配准性能验证,并利用TOF相机采集的卫星缩比模型点云进行位姿估计算法验证。经验证,算法的姿态角测量误差小于0.4°,位移测量误差小于3 mm,是一种针对空间相对位姿测量问题的抗噪性能更好、鲁棒性更高的有效解决手段。 Aiming at pose estimation for non-cooperative targets in on-orbit maintenance operations of space robots,we propose a pose estimation algorithm based on point cloud registration.Firstly,the hybrid filtering algorithm preserves the shape of the point cloud to the greatest extent while reducing its density.Then,the principal component analysis algorithm is used to establish the eigenvector transformation.The RANSAC algorithm is employed for coarse registration,followed by the improved ICP algorithm for fine registration,which results in the estimation of the rotation matrix,translation matrix,and attitude.Experiments are carried out to evaluate the performance of the algorithm.Simulated satellite point cloud models processed by rotation-translation transformations and Gaussian noise are used to verify the point cloud registration performance.The satellite model scene collected by a TOF camera point cloud is used to validate the pose estimation algorithm.The results show that the proposed algorithm has improved anti-noise performance,and showed higher robustness compared to traditional registration algorithms,with rotation attitude angle error less than 0.4°and displacement error less than 3 mm.
作者 郭素婕 郭崇滨 GUO Sujie;GUO Chongbin(Innovation Academy for Microsatellite,Chinese Academy of Sciences,Shanghai 201304,China;University of Chinese Academy of Sciences,Beijing 100049,China;Shanghai Engineering Centre for Microsatellites,Shanghai 201304,China)
出处 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第5期677-686,共10页 Journal of University of Chinese Academy of Sciences
基金 中国科学院青年创新促进会人才项目(2019292) 上海市青年科技启明星项目(19QA1408400)资助。
关键词 空间非合作目标 点云配准 相对位姿估计 TOF相机 spatial non-cooperative targets point cloud registration pose estimation TOF camera
  • 相关文献

参考文献11

二级参考文献82

  • 1李丽,任熙明.空间交会对接激光雷达关键技术分析[J].红外与激光工程,2008,37(S3):108-111. 被引量:8
  • 2余德军,龚俊斌,马杰,田金文.激光成像雷达成像仿真技术研究[J].红外与激光工程,2006,35(z4):160-166. 被引量:15
  • 3朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 4张世杰,曹喜滨,陈闽.非合作航天器间相对位姿的单目视觉确定算法[J].南京理工大学学报,2006,30(5):564-568. 被引量:31
  • 5P J Besl, H D McKay. A method for registration of 3 D shapes [J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 6G C Sharp, S W Lee, D K Wehe. ICP registration using invariant features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1). 90-102.
  • 7S Rusinkiewicz, M Levoy. Efficient variants of the ICP algorithm [C]. Quebec City: Proceedings of the 3rd International conference on 3 D Digital Imaging and Modeling, 2001. 145-152.
  • 8J Jiang, J Cheng, X L Chen. Registration for 3-D point clouds using angular invariant feature[J]. Neuro Computing, 2009, 72 (16 18): 3839-3844.
  • 9C Basdogan, A C Oztireli. A new feature based method for robust and efficient rigid body registration of overlapping point clouds[J]. The Visual Computer, 2008, 24(7-9)~ 679-688.
  • 10J J Dai, J Yang. A novel two stage algorithm for accurate registration of 3-D point clouds [ C ]. 2011 International Conference on Multimedia Technology, 2011. 6187-6191.

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部