期刊文献+

Neural Networks with Local Converging Inputs(NNLCI)for Solving Conservation Laws,Part II:2D Problems

原文传递
导出
摘要 In our prior work[10],neural networks with local converging inputs(NNLCI)were introduced for solving one-dimensional conservation equations.Two solutions of a conservation law in a converging sequence,computed from low-cost numerical schemes,and in a local domain of dependence of the space-time location,were used as the input to a neural network in order to predict a high-fidelity solution at a given space-time location.In the present work,we extend the method to twodimensional conservation systems and introduce different solution techniques.Numerical results demonstrate the validity and effectiveness of the NNLCI method for application to multi-dimensional problems.In spite of low-cost smeared input data,the NNLCI method is capable of accurately predicting shocks,contact discontinuities,and the smooth region of the entire field.The NNLCI method is relatively easy to train because of the use of local solvers.The computing time saving is between one and two orders of magnitude compared with the corresponding high-fidelity schemes for two-dimensional Riemann problems.The relative efficiency of the NNLCI method is expected to be substantially greater for problems with higher spatial dimensions or smooth solutions.
出处 《Communications in Computational Physics》 SCIE 2023年第9期907-933,共27页 计算物理通讯(英文)
  • 相关文献

参考文献3

二级参考文献2

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部