期刊文献+

Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems

在线阅读 下载PDF
导出
摘要 A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1467-1480,共14页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102) the National Natural Science Foundation of China(No.12202451)。
  • 相关文献

参考文献3

二级参考文献5

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部